Turkish Society of Physiological Sciences

42nd National Physiology Congress

05-08 September 2016

Düzce University, Turkey

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conferences</td>
<td>1</td>
</tr>
<tr>
<td>Symposia</td>
<td>4</td>
</tr>
<tr>
<td>Panels</td>
<td>7</td>
</tr>
<tr>
<td>Oral Communications</td>
<td>8</td>
</tr>
<tr>
<td>Poster Communications</td>
<td>26</td>
</tr>
</tbody>
</table>
42nd National Physiology Congress

05-08 September 2016

Düzce University, Convention Center, Düzce - TURKEY

<table>
<thead>
<tr>
<th>05 September Monday</th>
<th>06 September Tuesday</th>
<th>07 September Wednesday</th>
<th>08 September Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30 – 13.00 Lunch for Workshop Participants</td>
<td>10.45 – 11.35 Conference 2
Cenk Ayata</td>
<td>10.45 – 11.35 Conference 5
(Markus Hecker)</td>
<td>10.45 – 11.35 Conference 8
Richard Vaughn-Jones</td>
</tr>
<tr>
<td>16.30 – 17.00 Opening Session</td>
<td>14.45 – 15.00 Oral Presentations
Dr. Banu Ocakıçoğlu memorial program
Metin Baştuğ</td>
<td>15.05 – 15.50 Conference 6
Tayfun Uzbay</td>
<td></td>
</tr>
<tr>
<td>17.00 – 18.00 Respect to Masters</td>
<td>15.00 – 16.15 Oral Presentations – I
A & B & C Lecture Theatres</td>
<td>15.50 – 16.20 Coffee Break</td>
<td></td>
</tr>
<tr>
<td>18.00 – 19.00 Conference 1
M. Gazi Yaşargil</td>
<td>16.15 – 16.45 Coffee Break</td>
<td>16.20 – 17.10 Conference 7
Jens Leipziger</td>
<td>13.10 – 19.00 Excursion to waterfalls</td>
</tr>
<tr>
<td>19.30 - 21.00 Reception
(Düzce University, Convention Center)</td>
<td>17.30 – 18.15 Panel 2: Europhysiology
Bayram Yılmaz, Richard Vaughn-Jones, Jens Leipziger, Markus Hecker</td>
<td>20.00 – 24.00 Gala Dinner
(Turkuaz Beach Hotel, Akçakoca)</td>
<td></td>
</tr>
</tbody>
</table>

*Photograph Presentations & Exhibition
Annual General Meeting Turkish Society of Physiological Sciences
Poster Presentations & Lunch
Annual General Meeting Turkish Society of Physiological Sciences
Excursion to waterfalls
Photograph Presentations & Exhibition
Annual General Meeting Turkish Society of Physiological Sciences
Poster Presentations & Lunch
Annual General Meeting Turkish Society of Physiological Sciences
Excursion to waterfalls
Photograph Presentations & Exhibition
Annual General Meeting Turkish Society of Physiological Sciences
All abstracts have been reviewed by the following list of referees.

Prof. Dr. Aysel Ağar
Prof. Dr. İnci Alicantürk
Prof. Dr. Ahmet Ayar
Prof. Dr. Sami Aydoğan
Prof. Dr. Nurettin Aydoğan
Prof. Dr. Mehmet Aydın
Prof. Dr. Şeref Erdoğan
Prof. Dr. Hasaan Erdoğan
Prof. Dr. Filiz Basralı
Prof. Dr. Metehan Çiçek
Prof. Dr. Nazan Dolu
Prof. Dr. Nurcan Dursun
Prof. Dr. Nilüfer Erkasap
Prof. Dr. Numan Ermutlu
Prof. Dr. Ersin Fadıllioğlu
Prof. Dr. Hakkı Gökbel
Prof. Dr. Ümmühan İşoğlu
Prof. Dr. Nevzat Kahveci

Prof. Dr. Sacit Karamürsel
Prof. Dr. Muammer Kayatekin
Prof. Dr. Haluk Keleştimur
Prof. Dr. Naim Khan
Prof. Dr. Ertuğrul Kılıç
Prof. Dr. Sadi Sanlı Kurdak
Prof. Dr. Selim Kutlu
Prof. Dr. Melek Bor Küçükatağ
Prof. Dr. Nilsel Okudan
Prof. Dr. Guler Öztürk
Prof. Dr. Süleyman Sandal
Prof. Dr. Güldal Süyen
Prof. Dr. Gülderen Şahin
Prof. Dr. V. Nimet Uysal
Prof. Dr. Alex Verkhratsky
Prof. Dr. Mehmet Yıldırım
Prof. Dr. Bayram Yılmaz
Confidence

Conference 1
The Impact of Scientific Evolution on the Neurosciences
M. Gazi Yaşargil
Yeditepe University, Medical School Hospital, Department of Brain Surgery, Istanbul

It is not surprising that the invention of motor cars and airplanes was not considered 2000 or even 200 years ago, due to the absence of their socio-economic necessity. However, it is surprising that inventions for optic glasses and microscopes remained fairly delayed, not only to advance scientific research, but also to help those people with inherited or acquired weakness of their visual functions.

It is indeed astonishing that Ibn al-Haytham (Alhazen 915-1039), astronomer and mathematician, initially an engineer for hydraulics, who examined such phenomena as the rainbow, atmospheric refraction, mirror and lentiform crystals, and, notably, the anatomy and physiology of the eye, and wrote the famous book on optics (Kitab el-Menazir), which became widely influential in Europe, but he failed to consider developing an optical aid. The first single lens “spectacles” were manufactured in Florence, Italy (1303-1313), but the demand for them remained low until the invention of cheap books in the 17th century. The manufacture of sophisticated eye glasses with individual dioptrers, the availability of contact lenses, and finally laser surgery of the cornea, required 600 years of diligent research. At the end of the 16th century and beginning of the 17th century simple microscopes and telescopes were constructed in the Netherlands and Italy. Interestingly, periods of devastating epidemics and several wars in Europe did not inhibit the incessant endeavors of manufacturers, glass grinders, mathematicians, astronomers, scientists, and even philosophers (Descartes, Spinoza). The upheaval of the industrial revolution in England between 1770 and 1825 culminated in the production of achromatic microscopes without spherical aberration. The formulation of the equation “angular aperture” in 1880 by Ernst Abbe at Zeiss Company in Jena, Germany, allowed the serial production of high quality microscopes and telescopes. Advances in the entire field of neurosciences, particularly in integral neurophysiology, EEG, MEG, angiography, CT, MRI and ultrasound technologies constitute today the prime and essential components of neuro-diagnosis and neuro-therapies. Within the past 50 years, neurosurgery has experienced a great number of technological innovations, such as the introduction of stereotactic technology, operating microscope, bipolar coagulation technology, bipolar forceps, different sizes and shapes of temporary and permanent vessel and aneurysm clips, microsutures, ultrasound devices to identify the deep localized lesions, ultrasound microflowmeter, ultrasonic suction, ultrasonic microdrill apparatus, high speed drill apparatus, flexible and rigid endoscopy technology, intraoperative stimulation and monitoring technology, intraoperative tractography using diffusion tensor mapping, and anisotropic diffusion weighted MRI which provides spatial and directional information of the neuronal fibers, gradient respondent gamma surgery, and intensity modulated radiation therapy. Modern operating rooms offer hitherto unimagined technologies for the accurate targeting of the lesions, and their complete elimination without endangering adjacent normal structures and functions. A great number of lesions localized in so-called eloquent areas of the CNS, and defined as inoperable, are, at the present time, explored on a routine basis and successfully treated in many centers. The above qualification of a fully equipped department with a team of expert personnel represent ideal working conditions. One of the axioms guiding open societies is the issue of ethics, desiring us to respect the rights, freedom and dignity of each individual and, in cases of illness, requiring us to fulfill each patient’s claim to equal benefit from advances in medicine and surgery. Our professional goal is to further improve diagnostic and therapeutic procedures, and to ensure their availability globally to each and every individual.

Conference 2
Spreading Depolarization Waves in Injured Brain
Cenk Ayata
Harvard Medical School, Massachusetts General Hospital, Neurovascular Research Lab & Department of Neurology, Boston, MA, USA

Spreading depolarization are intense, slowly propagating waves of neuronal and glial depolarization that emerge in an apparently spontaneous fashion in injured brain regardless of the mode of injury (ischemic, hemorrhagic, traumatic). Starting at the onset of injury, recurrent spreading depolarizations continue to occur for many days after injury with very high frequency. They worsen the oxygen supply-demand mismatch by increasing the metabolic demand and decreasing the blood flow. Therefore, spreading depolarizations are considered a clinically relevant therapeutic target in various types of brain injury. However, pharmacological inhibition of spreading depolarizations has clinically proven to be difficult to achieve without unwanted side effects. Instead, recent efforts have turned to the origins of spreading depolarizations. If we develop a better understanding of how and why spreading depolarizations are triggered in the first place, we can perhaps implement measures in neurocritical care that might minimize their occurrence. In my talk, I will present data showing that oxygen supply-demand mismatch transients trigger spreading depolarizations in susceptible peri-infarct “hot zones.” Such supply-demand mismatch transients can be precipitated by transient reduction in oxygen supply, such as during brief hypoxic or hypotensive events that are clinically exceedingly common, or by transient increase in oxygen demand, such as during functional activation, which is part of life. In addition, I will present data showing that brief intracranial pressure spikes, which are also very common in neurocritical care, are also capable of triggering spreading depolarizations. I will finish by summarizing the clinical implications of the data, and how it can be tested clinically.
Interaction with environment plays a critical role in shaping our genetic variations. Especially, polymorphisms in the genes involved in inflammatory response show regional variations and affect our adaptation to the local environment by protecting integrity of our body. Fever is one of the most important components of inflammatory response, and it is usually induced by pathogen- or danger-associated danger signals during microbial infections. However, mutations in some innate immune response genes are also responsible for hereditary fever syndromes, which are characterized by recurrent and self-limited inflammatory episodes without an obvious trigger. These conditions are now known as autoinflammatory disorders. Familial Mediterranean fever is the most common form of autoinflammatory disorders. It is associated with autosomally recessively inherited MEFV gene variations, and prevalence of the carriers of these variations is quite high in Eastern Mediterranean populations, including those living in Asia Minor, reaching 20%. MEFV gene exon 10 variations result in increased activation of interleukin-1 beta (IL-1β) in inflammatory cells by proteolytic cleavage of its precursor by caspase 1 enzyme following triggers. IL-1β is known as the strongest endogenous pyrogen and responsible for fever and inflammatory response. Increased prevalence of MEFV mutation carriers in the Eastern Mediterranean may result from its accumulation through ages because of a selective heterozygous advantage. Higher frequency of sickle cell anemia mutations in certain regions of Africa is considered to be associated with a heterozygous advantage against malaria. Similarly, the MEFV variants might have provided a selective advantage to populations living in Asia Minor and neighboring regions by protecting them against pandemic infections with high mortalities such as smallpox through overcoming specific immune evasion ways of microbes with a higher inflammasome activity and IL-1β production.

Conference 4
How Do We Masticate Without Eating Our Own Tongue?
Kemal S. Türker
Koç University School of Medicine, Department of Physiology, Istanbul, Turkey

Mastication has two fundamental control mechanisms: the central pattern generator (CPG) that sets the pattern of mastication by alternately sending action potentials to jaw opening and closing muscles; and the peripheral controller that modulates the output of the CPG and jaw muscle motoneurons so that optimum bite forces are developed between the jaws. The peripheral control mechanism includes the cutaneous and mucosal receptors that innervate the lips and the oral mucosa, periodontal mechanoreceptors that innervate the support tissues of the tooth root, and muscle spindles in the jaw muscles. These receptors monitor chewing forces and modify the activity of muscles in the jaw, tongue and cheeks in order to facilitate mastication and prevent damage to oral tissues. To investigate their connections to motoneurons that innervate jaw muscles, we stimulate these receptors electrically and/or mechanically in consenting adult volunteers. The responses of the jaw muscles to the stimuli are recorded using intramuscular fine wire and surface electromyography (EMG) electrodes. These studies contribute to a better understanding of the neuronal circuitry of the masticatory system and provide a scientific baseline from where the neurological consequences of interventions that change the physical relationship of the masticatory elements can be investigated.

References

Conference 5
Epigenetic Control of Endothelial Nitric Oxide Synthase Expression and Its Role in Coronary Heart Disease
Markus Hecker
Department of Cardiovascular Physiology, Heidelberg University, Germany

A single nucleotide polymorphism (SNP) within the promoter of the endothelial nitric oxide (NO) synthase (NOS3) gene (T-786C, rs2070744) adversely affects the response of endothelial cells from CC-genotype individuals to shear stressor the prototypic anti-type 1 T-helper (Th1) cell cytokine interleukin-10. Homozygosity for the C-allele, which occurs in about 12% of Caucasians, is a strong predictor for coronary heart disease (CHD), polymyalgia rheumatica or rheumatoid arthritis (RA). We have previously identified a compensatory mechanism involving manganese-dependent superoxide dismutase that helps to maintain the bioavailability of endothelial cell-derived NO. With the shear stress-dependent increased release of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) from CC- but not TT-genotype endothelial cells, we have characterised another compensatory mechanism that may not only support the anti-inflammatory capacity of the CC-genotype endothelial cells but also act as a novel general defence mechanism against chronic inflammation. Correlating plasma 15d-PGJ2 levels with the severity of the disease in patients with CHD or RA support this notion.

Moreover, data acquired quite recently point to a possible epigenetic control of NOS3 expression through chromatin remodelling that may differ in at least two aspects between CC- and TT-genotype endothelial cells. Having generated knock-in mice harbouring the human C- or T-type NOS3 promoter with disease-susceptible genetic background, we will verify that the T-786C SNP of the human NOS3 gene, if present, boosts the development of arteriosclerosis and/or arthritis in these animals. The reason for this complex experimental approach is that instead of the 5'-GGG(TCTGG)3' motif found in humans the murine Nos3 promoter contains a 5'-GGGCAT-3' motif so that the suspected critical CpG-dinucleotide cannot form. Finally, we have begun to corroborate in in vitro transmigration model mimicking shear stress conditions at arteriosclerosis predilection sites that the T-786C SNP of the human NOS3 gene not only differentially affects monocyte-endothelial cell but also Th1 and Th17 cell-endothelial cell interaction, respectively, through 15d-PGJ2. In a nutshell, due to the acquired compensatory mechanisms the formerly adverse SNP in the promoter of the human NOS3 gene may be viewed as a largely neutral mutation.
Neuroplasticity in Substance Addiction

Tayfun Uzbay
Üsküdar University, Neuropsychopharmacology Application and Research Center (NPARC), Istanbul, Turkey

Substance abuse and addiction is increasingly understood as a neurobiological disorder where continuously abusive of addictive substances corrupts the normal circuitry of rewarding and adaptive behaviors generating from adaptive changes in central nervous system (CNS) induced by these substances. Neuroplasticity can briefly be defined as adaptive changes against internal and external stimuli in the brain's neurons, and structural and functional alterations in synapses formed by these neurons. If the changes are not confined to a single neuron but reach the level of a synapse, the adaptive response formed may also be called "synaptic plasticity" (1). Finally, neuroplasticity is a flexible re-organization, adaptation or remodeling of mammalian brain carried out by changes in synaptic formation and elements. It is affected by endogenous, exogenous and environmental stressful factors. While normal synaptic plasticity is involved in several vital functions such as mind, memory, learning, psychomotor performance and healthy behaviors, abnormal neuroplasticity may cause some CNS disorders such as addiction, depression, autism and schizophrenia. Long term potentiation (LTP) formation in neurons is necessary for learning and it is an adaptive response associated with synaptic plasticity. Because learning and memory is an important part of brain neuroplasticity, we can interpret the addiction as a negative neuroplasticity or a negative neuronal adaptation appearing under a heavy stress depending on toxic effects of continuously abused drugs in brain. In a molecular and cellular level, addiction is a negative neuroadaptation in some specific structures or pathways such as dopaminergic system in brain (2). This statement may be related to neurodegeneration or generates unusual, mutant or zombie (terrorist) neurons or both of them in specific brain regions (3). The process is directly generated and/or supported by chronic use of addictive agents. A treatment that inhibits neurodegeneration and stimulates healthy neurogenesis in damaged areas, and/or prevents to generate the zombie/terrorist neurons or converting them to normal neurons may provide a radical solution for this serious public health problem.

References

Extracellular ATP Signaling in Kidney Functions MAKE SENSE

Jens Leipziger
Institute of Biomedicine, Physiology, Aarhus University, Denmark

I will take you along a trail of own discoveries that have outlined an auto- and paracrine signaling system that is necessary for proper renal function. This system uses extracellular ATP, which is released from renal epithelia to then stimulate membrane receptors (purinergic P2X and P2Y). Multiple physiological stimuli exist that lead to cellular ATP release and these will be discussed. Most intriguingly, the flow of pre-urine along the renal tubule can be sensed by the primary cilium. Its bending causes an increase of [Ca²⁺], and activates ATP secretion. Stimulation of purinergic receptors has pronounced effects on the ability to transport ions and water along the entire renal tubule. These intra-renal purinergic signals work as endogenous "diuretics", i.e. they favor the excretion of urine. Importantly, the tubular lumen, i.e. the urinary space is an active signaling compartment, from which renal functions are regulated. Eventually, evidence accumulates indicating that aberrant activation of intra-renal purinergic signals are danger signals for the activation of immune responses and are involved in renal damage, fibrosis and loss of organ function.
Epilepsy is a very important disease manifested by recurrent paroxysmal bursts of abnormal electrical brain activity. More than 50 million people worldwide suffer from epilepsy, and about 30% of those affected have seizures that are resistant to treatment with the currently available antiepileptic drugs. For development of new and more effective drugs, and the study of mechanisms of the epilepsies requires appropriate experimental models. A good model for epilepsy should have certain features. Kindling has been extensively studied as an epilepsy model of complex partial seizures with secondary generalization. Kindling model of epilepsy is created by the repeated subthreshold electrical stimuli or repeated subthreshold chemical stimuli. The aim one of the studies in our laboratory was to reveal the effects of nitrendipine, levetiracetam and phenobarbital on kindling model. In order to induce kindling, three days of the week (Mondays, Wednesdays and Fridays) 35 mg/kg pentylentetrazole was administered intraperitoneally (i.p) until the animals kindled. Electrocorctographic activities were obtained from awake animals and their convulsive behaviors were classified. Nitrendipine (5 mg/kg), 20 mg/kg levetiracetam and 10 mg/kg phenobarbital significantly suppressed spike frequency in fully kindled rats (p<0.05). Coadministration of effective doses of 5 mg/kg nitrendipine and 20 mg/kg levetiracetam reduced epileptiform activity effectively (p<0.05). Our aim in the second study was to investigate the effect of carbamoxalone, a gap junction blocker, on the anticonvulsant effect of phenytoin in pentylentetrazole kindled rats. Phenytoin decreased generalized seizure duration, total spike number and seizure severity score (p>0.05). Carbamoxalone and phenytoin have anticonvulsant effects in PVT kindled rats. There was no significant difference between the carbamoxalone + phenytoin combination and phenytoin in terms of generalized seizure duration, total spike number and seizure severity score (p>0.05). Our third study showed a decrease in the CA1 hippocampal pyramidal neurons number of kindled rats (p<0.05).

Cannabidiol (CBD) inhibited epileptiform activity effectively (p<0.05). Our findings suggest that focal adenosine is more effective in kindled rats (p<0.05). Among the cannabinoids tested, CBD is the most effective in inhibiting epileptiform activity.

Adenosine is an inhibitory neuromodulator that suppress excitatory synaptic communication between neurons. Because it is not a classical neurotransmitter, adenosine is neither stored in presynaptic vesicles nor it affects only on synaptic area. It controls neuronal activity through activation of A1, A2A, A2B and A3 receptors. Adenosine and its receptors are involved in different diseases and disorders such as hypoxia, ischemia, inflammation, pain, Parkinson and epilepsy. Epilepsy is a major public health problem affecting at about 1% of the population. At the basis of epileptic seizures, there is a loss of balance in neuronal excitability. It has been reported that many neurotransmitters and neuromodulators can be associated with this change in the neuronal excitability. In this context, it has been suggested that adenosine may act as an endogenous anticonvulsant. Many studies have reported a protective effect of adenosine against epileptic seizure and epileptiform activity. For examples, the daily systemic administration of adenosine prevents the epileptic behavioral induced by pentylentetrazole. Adenosine also inhibits epileptiform activity induced by bicuculline in the rat hippocampus. In our laboratory, we have compared the effects of focal and intracerebroventricular (i.c.v) administered adenosine (1, 10 and 100 μg/rat) on the penicillin-induced epileptiform activity in rats. Our findings suggest that focal adenosine is more effective than i.c.v adenosine. In another study, we also found that adenosine (100 μg/rat, i.c.) and nitric oxide may decrease penicillin-induced epileptiform activity in rats and that nitric oxide, at least in part, may mediate the anticonvulsant effect of adenosine. Consistent with the literature, our results indicate that adenosine has an inhibitory effect on epileptiform activity.
Symposium 2: Role of Neuronal and Non-neuronal Cell Types in CNS Function in Health and Disease

S2.1 Optogenetic Manipulation of Neuronal Circuits Regulating Feeding Behavior
Deniz Atasoy
Istanbul Medipol University, Medical School, Department of Physiology, Istanbul, Turkey

New tools for mapping and manipulating molecularly defined neuronal circuits have improved the understanding of how the central nervous system regulates appetite. A starvation-sensitive agouti-related peptide (AGRP) neurons can rapidly elicit behavioral state similar to food deprivation, which present an entry point for reverse-engineering neural circuits for hunger. We mapped functional synaptic interactions of AGRP neurons with multiple cell populations in mice and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. We have also developed tools for detailed structural analysis of AGRP neuronal connections using serial-section electron microscopy. Our results characterized some basic features of functional and anatomical circuit organization for AGRP axon projections.

S2.2 Comparison of Central and Peripheral Myelination Dynamics
Bilal Ersen Kerman
Istanbul Medipol University, REMER, Istanbul, Turkey

Myelin is an insulating material that accelerates the electrical impulse propagation along axons and provides trophic support to neurons. Dysmyelination or demyelination (improper development or loss of myelin, respectively) occurs in many neurological disorders, such as multiple sclerosis, Pelizaeus–Merzbacher disease and other leukodystrophies leading to disruption of electrical impulse conductivity, atrophy of neurons, and permanent functional deficits. Myelin is produced by specialized glial cells: oligodendrocytes and Schwann cells. In the peripheral nervous system, Schwann cells myelinate axons in one internode (myelinated region) and cell ratio. Conversely, in the central nervous system, oligodendrocytes send out processes to myelinate several internodes. Common molecular pathways and mechanical properties as well as significant differences are observed for myelination within both systems. In order to study myelin formation in detail, we are observing wrapping of axons by both oligodendrocytes and Schwann cells in vitro through live imaging. We observed that at the early stages of myelination, oligodendrocytes surveyed the environment and their processes anchored on the axons. Next, these processes wrapped around the axons and expanded to cover the entire internode. These findings lead us to propose a novel myelination model, which was named SARAPE. Previously, it was proposed that Schwann cells wrapped the axons like a rolling carpet. In our initial observations, Schwann cells interacted with axons in a dynamic fashion. We believe that comparing and contrasting myelination processes in both systems will lead to better understanding of basic mechanisms of myelination. We believe that this information will aid in development of novel therapies against myelin disorders.

S2.3 The Role of Pericytes in Central Nervous System and Neurodegenerative Diseases
Yasemin Gürsoy-Özdemir
Koç University, Medical School, Department of Neurology and Neuroscience, Istanbul, Turkey

Pericytes are the cells of the blood brain barrier. They are localized especially in the precapillar arterioles, capillaries and post capillary venous system. They function in brain activity dependent bloodstream regulation (neurovascular coupling), maintenance of the blood brain barrier integrity and angiogenesis. These cells express genes associated with contractility similar to the smooth muscle cells and have a role in the regulation of bloodstream in the vascular bed. They prevent full reperfusion in ischemic strokes (especially in the case of reperfusion insult) by disrupting microcirculation as a result of oxidative-nitrative effect. Their role in neurodegenerative diseases like Alzheimer’s disease is well documented with recent studies. Especially, loss of pericytes and increment of PDGF which is a downstream product of pericytes in cerebrospinal fluid and blood implies pericytes are involved in the development of neurodegenerative diseases. In this talk, pathophysiology of pericytes in central nervous system and neurodegenerative diseases will be discussed.

Symposium 3: Thermal Stress and Physical Activity

S3.1 Thermal Stress and Physical Activity
Sanlı Sadi Kurdak
University of Çukurova, Faculty of Medicine Department of Physiology, Division of Sports Physiology, Adana, Turkey

It’s known that in today’s world there are very serious campaigns that inspire an active life style. Additionally, due to their intense competitive calendar, athletes are obliged to train and compete at all times throughout the year. During physical activity, approximately 25% of the energy released with metabolic reactions is used to do active work. The remaining 75% is released as heat and this energy causes the body temperature to increase. Because of this, body temperature tends to proportionally increase with respect to the type and intensity of the exercise during various types of physical activity. In warm blooded organisms that are programmed to do active work. The increase in metabolic need during physical activity creates a significant stress for the cardiovascular, respiratory, skeletal, but also on all other organ systems. Besides the uncontrolled increase of body temperature and the water-electrolyte imbalance, the addition of problems in blood flow makes the maintenance of homeostatic conditions harder during physical activity in high temperatures. Any type of problem that may occur in this fragile balance, in the most optimistic case, will decrease athletic performance and in some cases cause life threatening issues. Deriving from this point, researchers conducted studies to assess different strategies to over-
come the problem of hyperthermia during physical activity. Among these, active cooling strategies, sweating and proper hydration methods and studies that address the treatment of problems that arise after instances of hyperthermia and acclimatization are the ones that stand out. The importance of having fundamental knowledge on hyperthermia, exercise and thermoregulation mechanisms to all bodies that participate in sportive activities in different scales in maintaining athletic performance as well as protecting human health, should not be forgotten.

S3.2 Football in Hot and Humid Conditions - Potential Threats and Precautions

Kerem Tuncay Öзgünen
University of Çukurova, Faculty of Medicine Department of Physiology, Division of Sports Physiology, Adana, Turkey

In the world different sports are played regardless of age, gender and physical capacity. Even though most people perform sports for recreational purposes, it can really be physically demanding at the professional level. When we make a worldwide list of sports according to their popularity, 8 of 10 post popular sports are played outdoor and most of them are played either whole year or between spring and autumn. Most popular sport of the list football, is generally played in hot seasons when the preseason preparation period is included. Most energy liberated during physical activity appear as heat and must be dissipated from body surface to prevent thermal damage to homeostasis. Even though under mild environmental conditions excess heat can be liberated via evaporation, a drastic increase in surrounding environmental temperature and especially humidity causes the body to gain heat instead of losing. It is well known that the sweating rate almost increase instantaneously following the initiation of physical activity. It is important to remember that there is a positive correlation between the sweating rate and the intensity of the physical activity. Both information lead to a simple conclusion that throughout a high level physical activity just as in a professional football match, fluid loss by evaporation is inevitable. One of the threats to player’s health is if the surrounding environment is humid enough then evaporation might lead to vastly fluid loss rather than excess heat dissipation which in turn causes an extra increase in body core temperature. It is known that in hot and humid environments during a football match, some players’ body core temperature might increase to levels that is defined as profound hyperthermia. Such high values definitely raise concerns for the well-being of the players. To minimize the adverse effects of hot and humid conditions some preventive measures must be taken. Proper hydration of the player, acclimation to environment and cooling interventions before and during exercise are some of the topics that will be discussed as prophylactic interventions.
Panels

Panel 1: Medical Simulation and Mathematical Modelling
Narin Derin¹, Fatih Karaaslan¹, Sezen Milli Avtan²
¹Akdeniz University, Medical School, Department of Biophysics, Antalya, Turkey
²İstanbul Sağlık Müdürlüğü, SIMMERK Medikal Simülasyon Merkezi, Istanbul, Turkey

Mathematical models in physiology are used to test hypotheses, to understand any system as a whole and to predict/estimate the values of variables cannot be measured technically. Besides scientific studies, mathematical models and simulators built by using these models are also performed for medical education. The history of medical simulation, the first medical simulation center in our country (Simmerk), contribution of simulation to medical education and use of mathematical modelling in physiology will be discussed in Medical Simulation and Mathematical Modelling titled panel in 42nd National Physiology Congress.

Panel 2: Europhysiology
Biennial Joint Physiology Meetings in Europe
Bayram Yılmaz¹, Richard Vaughan-Jones³, Jens Leipziger² and Markus Hecker⁴
¹Yeditepe University, Medical School, Department of Physiology, Istanbul
²Oxford University, Burdon Sanderson Cardiac Science Centre, Department of Physiology Anatomy & Genetics, Oxford, UK
³Aarhus University, Institute of Biomedicine, Physiology, Denmark
⁴Heidelberg University, Institute of Cardiovascular Physiology, Germany

Earlier this year, the Physiological Society, the Scandinavian Physiological Society, the Deutsche Physiologische Gesellschaft and the Federation of European Physiological Societies (FEPS) initiated an agreement to co-host a series of biennial joint meetings. The series will begin in London, UK in 2018 and will subsequently be organised in Berlin, Germany (2020) and Copenhagen, Denmark in 2022. The Europhysiology meetings will replace the national meetings of the respective societies. FEPS will always be a joint organiser of these biennial meetings. The aim of the Europhysiology meetings is to bring together the broader European physiology community and promote collaboration among scientists. In the last two decades physiology meetings have been challenged by evolving sub-disciplinary and thematic meetings. In this exciting initiative, it is hoped that participation of large numbers of physiologists across Europe will enable organizers to hold specific sessions and thematic symposia to represent all aspects of physiology. It is also expected that these joint biennial meetings will attract scientists from other parts of the world. In this panel, former President of the Physiological Society (Richard Vaughan-Jones), Representative of the Scandinavian Physiological Society (Jens Leipziger) and President (Markus Hecker) and Secretary General (Bayram Yılmaz) of FEPS will discuss perspectives, challenges and opportunities of the Europhysiology meetings with the Turkish physiologists.

Panel 3: Research University Identity, Quality Problems in PhD and Residency Education and Search of Contemporary University in Turkey
Cafer Marangoz¹, Şerif Erdoğan², Gürkan Öztürk³, Elif Şen⁴
¹Ondokuz Mayıs University, Medical School, Department of Physiology, Emeritus, Samsun, Turkey
²Çukurova University, Medical School, Department of Physiology, Adana, Turkey
³İstanbul Medipol University, Medical School, Department of Physiology, Istanbul, Turkey
⁴Ondokuz Mayıs University, Medical School, Department of Physiology, Samsun, Turkey

In the last 20 years, several countries have restructured their higher education system and made new university legislation. European Union member countries are continuing their efforts to increase their number of world-class universities and to compete with the best universities in the United States for global higher education. In the process of restructuring higher education in Europe, there are five main factors. They are autonomy, expansion of higher education, market sensitivity (entrepreneurial and innovative universities), harmony and quality control. There have been a dramatic increase in the number of new state and foundation universities in Turkey in order to meet the increasing demand for higher education, and this process is ongoing. Most of the newly established universities prioritize education, while setting infrastructure for scientific research becoming a second priority. In addition, need and employment of high profile researchers appears to be an important problem. There has long been a quality concern in PhD education. Residency training and education is usually programmed to educate specialist doctors, and yet the efficiency of residency training towards fostering research scientists is discussed. Particularly, there have been problems in employment of residency trained doctors in basic medical sciences. In this panel, problems and reorganization of Turkish higher education system in line with trends in developed countries and suggestions for improvement will be discussed.
Oral Communications

OC01
The Effect of Coenzyme Q10 on Absence Seizures and the Role of Nitric Oxide Pathway in this Effect
Handan Güneş, Ercan Özdemir, Sefa Gülțürk, Gökhan Arslan
Cumhuriyet University Medical Faculty, Department of Physiology, Sivas, Turkey

AIM: It is thought that, a dietary supplement Coenzyme Q10 (CoQ10) influence the nitric oxide pathway and decreased generalized epileptic seizures. In this study, we have investigated effects of CoQ10’s role on absence seizures and the role of nitric oxide pathway in this disorder.

METHODS: Six months old WAG/Rij male rats with spontaneous seizure activities were randomly divided into 12 groups (n=72). One week after placing the electrodes for EEG recording, animals were connected to the Powerlab data acquisition unit for observing the spontaneous seizure activities. Three hours after the EEG recording, the solvent of CoQ10 soybean oil (control group), CoQ10 (25, 50, 100 ve 200 mg/kg), L-arginine (500 ve 1000 mg/kg), 7-Nitroindazole (25 ve 50 mg/kg) and combination of these drugs were applied intraperitoneally (i.p.). EEG recording was started again after 15 min and three more hours of recording was obtained. Seizure activities recorded (total number of seizures, total seizure duration, total number of spikes, the number of spikes per seizure, the average duration per seizure) after the drugs were analyzed by comparison with the pre-drug seizure activities.

RESULTS: CoQ10 (50 mg/kg and higher doses) and nitric oxide precursor L-arginine (500 ve 1000 mg/kg) increased the absence seizures compared with the control group (p<0.05). On the other hand, neuronal nitric oxide synthase inhibitor 7-Nitroindazole (25 and 50 mg/kg) reduced the seizures (p<0.01). The combination of CoQ10 (200 mg/kg) + L-arginine (1000 mg/kg) was not significant in comparison with the L-arginine which was administered alone (p>0.05). CoQ10 repressed the effect of 7-Nitroindazole and was brought closer to the control group values in the combination of CoQ10 (200 mg/kg) + 7-nitroindazole (50 mg/kg) group.

CONCLUSIONS: We suggest that absence epileptic patients should avoid the use of food supplements that have CoQ10 and/or cause nitric oxide release.

OC02
The Role of T-Type Calcium Channels in Proconvulsant Effect of Apelin-13 on Penicillin-Induced Epileptiform Activity
Durmuş Uçar1, Gökhân Arslan2, Sabih Kübra Aliç1
Mustafa Ayyıldız3, Erdal Ağar1
1Department of Physiology, Medical School, Gazi̇osmanpaşa University, Tokat, Turkey
2Department of Physiology, Medical School, Cumhuriyet University, Sivas, Turkey
3Department of Physiology, Medical School, Ondokuz Mayis University, Samsun, Turkey

AIM: Epilepsy is characterized by recurrent seizures that involves abnormal, excessive and hypersynchronized electrical discharges of neurons. It has been shown that the endogenous neuropeptide, apelin-13 affect intracellular calcium level, suggesting apelin-13 may act as a partial/weak agonist of Ca²⁺ influx. The aim of this study was to investigate the interaction of apelin-13 and a selective T-type calcium channel blocker NNC 55-0396 in penicillin-induced epilepsy.

METHODS: 35 male albino Wistar rats (180-240 g) were divided into 5 groups. Groups: 1-Control, 2-Apelin-13 (15 µg, i.c.v.), 3-NNC 55-0396 (30 µg, i.c.), 4-Apelin-13 (15 µg, i.c.v.) + NNC 55-0396 (30 µg, i.c.), and 5-NNC 55-0396 (30 µg, i.c.) + apelin-13 (15 µg, i.c.v.) (n=7 per group). Rats were placed in the stereotaxic frame after anesthetized by 1.25 g/kg urethane (i.p.). After drilling two holes on the skull using a hand drill, the recording electrode were placed into the holes and connected to the PowerLab data acquisition system. Substances were applied 30 min after penicillin (500 IU, 2.5 µl, i.c.) injection. The data obtained were compared by One-Way ANOVA with Post-Hoc Tukey test. p≤0.05 was considered statistically significant.

RESULTS: Apelin-13 increased the mean frequency of epileptiform activity in 20th min until the end of the experiments. NNC 55-0396 decreased the spike frequency in the 40th minute. The administration of NNC 55-0396 after apelin-13 reversed the proconvulsant effect of apelin-13 and caused a decrease in the spike frequency in 140th min. Interestingly, when apelin-13 was administered 10 minutes after NNC 55-0396 injection, the proconvulsant effect of apelin-13 was not observed. Even though, the mean spike frequency was significantly decreased in the 60th min.

CONCLUSIONS: The proconvulsant effect of apelin-13 was blocked by NNC 55-0396. Therefore, it is assumed that the proconvulsant action of apelin-13 might be mediated by T-type calcium channels in the experimental penicillin model of epilepsy.

OC03
Effects of Agomelatine on Penicillin-Induced Epilepsy with Electrocochleogram and Blood Pressure
Sinem Muhsine Ethemoğlu1, Burcu Şeker1, Selim Kutlu2, Bayram Yilmaz2
1School of Medicine, Department of Physiology, Yeditepe University, Istanbul, Turkey
2School of Medicine, Department of Physiology, Necmettin Erbakan University, Konya, Turkey

AIM: Agomelatine is an antidepressant which has been in use since 2009. It is a synthetic analog of melatonin, so it binds to melatonin receptors MT1 and MT2. In addition, agomelatine is an antagonist of serotonin receptor 5-HT2c. Thus, it causes antidepressant effects by increasing noradrenaline and dopamine concentrations. In this study, we investigated the effects of agomelatine on epileptic activity and blood pressure changes in penicillin-induced experimental epilepsy model.

METHODS: Forty adult male Spraque-Dawley rats were used in four groups (n=10/group). Control (tap water), 10 mg/kg Agomelatine, 50 mg/kg Agomelatine and 100 mg/kg Agomelatine (n=10). Agomelatine was administered by oral gavage for 14 days. After administration of the last dose, animals were anesthetized with
urethane (1.25 g/kg). Femoral artery was catheterized for blood pressure measurement. Then, penicillin (500IU/2.5µl) was applied intracortically to induce epileptic seizures. Electrocoorticography was recorded for 90 min through electrodes located on the somatomotor cortex. Spike frequencies and amplitudes recorded were analyzed by One-Way ANOVA with LSD. P<0.05 was considered to be statistically significant. RESULTS: Agomelatine at 50 mg/kg dose significantly decreased spike frequency (p<0.001) at the end of 14 day application period. On the other hand, amplitudes of spikes did not significantly differ in any of the groups. Agomelatine administration had no significant effect on mean blood pressure values recorded from the femoral artery.

CONCLUSIONS: The most important finding of the present study is that agomelatine (50 mg/kg) treatment for 14 days can have anti-convulsant effects. These result suggest that Agomelatine may also be used as an important antidepressant in epilepsy patients. This project was supported by Necmettin Erbakan University Research Fund (BAP #141318006).

OC04
The Combination of Nesfatin-1 and Phenytoin Has a Synergistic Effect in Improving Seizure-induced Neuronal Damage and Memory Dysfunction in Rats
Seyvil Arabacı Tamer1, Türkcan Koyuncuoğlu1, Ayça Karagöz2, Dilek Akakın2, Can Erzik3, Meral Yüksel4, Berrak Ç. Yeşen1
1Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey
2Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
3Marmara University School of Medicine, Department of Medical Biology, Istanbul, Turkey
4Marmara University Vocational School of Health Service, Istanbul, Turkey

AIM: Based on anti-inflammatory and anti-apoptotic effects of nesfatin-1 (NES) reported in several inflammatory models, we aimed to investigate neuroprotective effects of nesfatin-1 on seizure-induced neuronal injury. METHODS: Following passive avoidance test (PAT), male Wistar albino rats were divided into control (n=12) and pentylentetrazole (PTZ)-induced seizure (n=72) groups. Thirty minutes prior to PTZ (45 mg/kg; intraperitoneal, i.p.), NES (0.3, 1 or 3 µg/kg/day), phenytoin (PH, 40 mg/kg/day), PH + NES (0.3µg/kg/day) or saline was injected i.p., and seizures were scored using Racine’s scale. Treatments were repeated at 24th and 48th h of seizures. At 72nd hour, PAT was repeated to evaluate memory function, and rats were decapitated. Oxidative parameters, histological and immunohistochemical evaluations were determined in brain tissues. Statistical analysis was performed by ANOVA and Student’s t tests.

RESULTS: Among PTZ groups, high percentage of rats with tonic-clonic seizures and high average seizure-scores were reduced only in PH+NES-treated group (p<0.05). Control rats avoided entrance to dark-chamber in 5 min, while rats in PTZ groups entered in shorter times, indicating memory dysfunction. NES (3 µg/kg/day) increased delay in entrance (p<0.05). Seizure-induced elevations in malondialdehyde, nitric oxide and chemiluminescence levels were depressed by NES- (0.3 µg/kg), and PH+NES-treated groups, while all doses of NES, but not PH, elevated depleted glutathione level (p=0.001). Neuronal degeneration in cerebral cortex, hippocampal CA3 and dentate gyrus of saline-treated PTZ group (p=0.001) was reduced in NES- (0.3 µg/kg), PH- and PH+NES-treated rats. Increased TUNEL-positive cells were determined in cortices of PTZ-administered rats, but no significant difference was observed among treatments. Increased glial fibrillary acidic protein immunolabelling determined in cortex and hippocampal CA3 of PTZ-administered group was reduced in NES- (0.3 µg/kg) and PH+NES-treated groups (p<0.05). CONCLUSIONS: Nesfatin-1 has a synergistic effect with phenytoin, potentiating its anti-seizure effect along with an additional neuroprotection on seizure-induced oxidative brain injury.

OC05
The Connection Between Sleep Spindles and Seizures in Schizencephaly: A Case Report
Murat Kayabekir1, Mustafa Ceylan2, Ahmet Yalçın3, Ömercan Topaloğlu4
1Regional Training and Research Hospital, Sleep Disorders Center, Electrophysiology Laboratory, Erzurum, Turkey
2Neurology Clinic, Erzurum, Turkey
3Radiology Clinic, Erzurum, Turkey
4İnönü University Medicine Faculty, Department of the Endocrinology, Malatya, Turkey

AIM: The aim of this case report is to define the interaction between sleep and epilepsy (and, sleep spindles and seizures), also the importance of electrophysiological follow up in sleep laboratory and correct diagnostic approach. CASE: Sleep spindles are generated from the thalamus. Sleep spindles and seizures originate from the same type of dynamical system. It has been shown that antagonizing manipulations made on sleep spindles had the same effect on seizures. Schizencephaly is a rare congenital disorder of cell migration with defect in sulcation. It is characterized by gray matter lined clefts. RESULTS: 23 years old male patient was a student attending university. He had complaints of short-term paresthesia in right arm at daytime and morning. Brain MRI showed us “Cortical Heterotopia” at left temporoparietal area. In polysomnography (PSG) analysis, there were no sleep spindles, mostly there were delta wave oscillations together with repeated seizures. CONCLUSIONS: The absence of sleep spindles in PSG, presence of epileptic seizures and somatic complaints of the patient together with the appearance of heterotopic area on brain MRI led us to think about the influenced of associative thalamocortical tracts. Subcortical heterotopic neurons due to schizencephaly may be shown by MR tractography. As a result; this case is believed to be of importance with regard to understand the physiopathological basis of the relationship between sleep spindle and epilepsy.
OC06
Effects of Cannabinoid Receptor Blockers on Serum Nesfatin-1/Nucb2 Levels in REM sleep Deprived Mice
Oktay Kaya1, M. Elif Yılmaz2, Şinasi Bayram3, Özgür Gündüz4, Gülşün Kızılay Özfidan1, Levent Öztürk1
1Department of Physiology, Trakya University Faculty of Medicine, Edirne, Turkey
2Department of Physiology, Gazi University School of Medicine, Ankara, Turkey
3Department of Histology, Gazi University Faculty of Medicine, Ankara, Turkey
4Department of Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey

Aim: Recently, the effects of both nesfatin-1 and cannabinoid receptors on sleep, metabolism, and control of food intake have been demonstrated (1,2). No previous study investigated the relationship between cannabinoid receptor blockers and nesfatin-1 levels. In this study, nesfatin-1, insulin and glucose levels were investigated in 72-hour REM sleep deprived balb/c mice after intraperitoneal administration of a cannabinoid, WIN55,212,2 and cannabinoid receptor blockers (CB1 blocker AM251 and CB2 blocker SR144528).

Methods: In total, 60 balb/c mice were exposed to 72 hours sleep deprivation on modified flowerpot method. Groups and intraperitoneal drug administrations were as follows: Group 1 (control) received injection of vehicle (78% saline+1% Ethanol+1% Tween 80+20% DMSO). Group 2 received WIN 55,212,2. Group 3 received AM251 followed by WIN 55,212,2. Group 4 received SR144528 followed by WIN 55,212,2 injection. Group 5 received only AM251. Group 6 received only SR144528. Blood samples were collected 1h after drug administrations and prepared for biochemical measurements. Glucose levels were measured by glucometer, whereas insulin and nesfatin-1 levels were measured by ELISA.

Results: There was no significant (>10%) weight change after 72-hour REM sleep deprivation. Glucose and insulin levels were higher in CB2 receptor antagonist groups compared to controls. Nesfatin-1 levels were comparable among the groups.

Conclusions: We suggest that CB2 receptor antagonist led to increase in blood glucose and insulin levels. Nesfatin-1 levels were not affected from administration of cannabinoid agonist or antagonists. This study was supported by TUBAP (2015/230).

OC07
Effect of Resveratrol on Diabetic Nephropathy
Duygu Altın1, Çiğdem Özer2, Aydan Babül2, Sevism Ercan3, Ergin Dilekioz4, Gülşün Take Kaplanoğlu3
1Department of Physiology, Ufuk University Shool of Medicine, Ankara, Turkey
2Department of Physiology,Gazi University School of Medicine, Ankara,Turkey
3Department of Pharmacology, Gazi University School of Medicine, Ankara, Turkey
4Department of Histology and Embryology, Gazi University School of Medicine, Ankara, Turkey

Aim: Resveratrol is known with its anticancer, anti-inflammatory, antioxidative effects. The aim of present study was to investigate morphologic, biochemical and functional effects of resveratrol on diabetic nephropathy in streptozotocin diabetic rat model.

Methods: Ethical Committee for the Use and Care of Laboratory Animals of Gazi University approved the procedures used in this study. 30 adult male Wistar albino rats weighing 250-300 g were used in experiments. The rats were divided into 4 groups as follows: 1.Control, 2.Resveratrol, 3. Diabetes, 4. Diabetes+Resveratrol. Streptozotocin (65 mg/kg in 0,1M in citrate buffer) was administered to diabetes groups, citrate buffer was administered to control groups intraperitoneally as a single dose. Two weeks after streptozotocin administration, a basal blood glucose level above 250 mg/dl were considered diabetic. Application of resveratrol (10/mg/kg/day dose dissolved in 0.1M ethanol) or vehicle wasstarted 2 weeks after diabetes formation and continued through 8 weeks by using oral gavage. At the end of experiments, rats were anaesthetized with Rompun+ketamine(50+60-100mg/kg), and sacrificed by cardiac puncture. During the study: Fasting blood glucose levels, renal functions were analyzed and renal vascular responses and immunohistochemically, morphological research performed by TEM, proinflammatory cytokines TGF-β, iNOS, eNOS, fibronectin levels were measured. Kidney tissue oxidant (malondialdehyde,MDA) and antioxidants (glutathione, GSH) parameters were studied, total nitric oxide (NOx)levels were also determined. Results were statistically analyzed by using Kruskal-Wallis and Mann-Whitney tests.

Results: Fasting blood glucose, fluid intake, urine volume, ALP, ALT, BUN and creatinine levels in blood were determined to increase in diabetic groups and diminution in sodium level (<p<0.05). But, application of resveratrol did not have any significant effect on these parameters. In diabetic and resveratrol applied groups; Angiotensin II and Phenilephrine on perfussion pressure were not significant when compared with the control. However both Angiotensin II and Phenilephrine effects were significantly decreased in Diabetes+Resveratrol(<p<0.05). In the same group, vasodilator responses of acetylcholine were found to significantly decreases (<p<0.05). By resveratrol treatment, diabetes induced increased kidney MDA levels were decreased (<p<0.01) and GSH levels were increased (<p<0.01), but NOx levels were not significantly changed. Examination of TEM: application of resveratrol significantly preserved diabetes-related deteriorating renal tissue.

Conclusions: Increment of TGFB, fibronectin and iNOS immunoreactivity were partially decreased; however, decreased eNOS level is increased with treatment of resveratrol.

This study was supported by Gazi University Scientific Research Projects Unit (01/2011-75).

OC08
Investigation of Possible Effects of Exendine During Exposure to Moderate Chronic Stress in Dehydroepiandrosterone-induced Polycystic Ovary Syndrome in Rats
Burcu Köksal1, Ergül Alçın2, Tuba Özgoçer2, Azibe Yıldız2, Nigar Vardı3, Özlem Baruçğu4, Sedat Yıldız1
1Department of Physiology, Inonu University, Malatya, Turkey
2Department of Physiology, Hacettepe University, Ankara, Turkey
3Department of Histology, Inonu University, Malatya, Turkey
4Department of Histology, Inonu University, Malatya, Turkey

Aim: Polycystic ovary syndrome (PCOS) is a disease leading to endocrine, metabolic and reproductive problems. Chronic stress in women with PCOS causes to increase insulin resistance by affecting hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes. Nowadays insulin hormone analogs (Glucagon-like peptide 1 (GLP) agonists) are investigated to decrease insulin resistance. Exenatide (Exe-4) molecule is the best natural GLP-1 agonist
and its affinity to GLP-1 receptors is high. It contributes to decrease insulin resistance associated with PCOS by increasing pancreatic cell mass, feeling of fullness and loss of weight. Despite the fact that target of PCOS cure is to decrease insulin resistance and to adjust androgen levels, stress situation of women with PCOS is not considered during the cure. For contributing to this problem and investigating effects of stress on PCOS, possible effects of Exe in moderate chronic stress on cure of rats with PCOS induced by DHEA was investigated.

METHODS: PCOS model; DHEA (6mg/100g) in 0.2ml sesame oil was applied subcutaneously to 21 days Sprague-Dawley rats until their vaginal opening was observed. 0.2 ml sesame oil was injected subcutaneously to rats in solution groups. Then vaginal smear was taken from rats having vaginal opening and their cycles were observed to check PCOS. Blood samples from tails of rats having cycle deficits were taken and HOMA-IR values was calculated. Restricted movement field for stress was applied to the rats with insulin resistance during one hour in each day of 4 weeks. Exe-4 (10μg/kg/day) was applied intraperitoneally to the rats in stress medium for four weeks. Effects of Exe-4 and chronic mild stress application on HOMA-IR, LH, FSH and corticosterone were investigated after taking blood samples from the rats at the end of the applications. Moreover ovariums were histologically investigated.

RESULTS: Administration of Exe-4 in stress situation increased HOMA-IR, corticosterone level and duration of completing eustrus cycle but it decreased number of total healthy follicles. Normal Exe-4 dose in PCOS treatment during moderate chronic stress did not have significant effect on insulin resistance and ovarium deficits.

CONCLUSIONS: Chronic stress has harmful effects on metabolic diseases like PCOS and limits effects of treatment agents in PCOS.

OC09
The Effect of Tadalafil on Renal Fibrosis Induced by Ureteral Obstruction
Selma Çırrık¹, Erdal Benli², Sema Nur Ayyıldız³, Ersagun Karagüzel², Ayper Kaçar², Tevfik Noyan³ Ali Ayyıldız³, Sibel Köktürk²
¹Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey,
²Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
³Department of Urology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey

AIM: It has been reported that the cGMP increasing approaches and non-specific calcium channel antagonist, and 8-br-cADPR, TRPM2 ion channel antagonist, on renal I/R injury by using biochemical and histopathological methods.

METHODS: A total of 60 Wistar albino rats were used in the study. Group 1 is the control group. Group 2 sham; right kidney has been dissected. Group 3 I/R; right kidney has been dissected, ischemia for 1 hour and reperfusion for 24 hours was applied to the left kidney. The surgical processes in the 3rd group were applied to the animals in Group 4, 5 and 6, respectively 4 mg/kg nifedipine, 4 mg/kg nifedipine+40 µg/kg 8-br-cADPR and 4 mg/kg nifedipine+400 µg/kg 8-br-cADPR were applied intraperitoneally before the commencement of reperfusion. The differences were compared with the Tukey Post Hoc Analysis following the OneWayANOVA test (P<0.05).

RESULTS: When compared to the control group; the levels of CD38, cADPR, TNF-α, IL-1β, MPO and MDA increasing in I/R group have significantly decreased in the groups to which especially 8-br-cADPR was applied. The rennin level decreasing when compared to the control group has meaningfully increased with the application of high dosage 8-br-cADPR. Significant changes did not occur in EPO levels. In the histological examinations; the renal injury increasing with I/R, caspase-3 expression and TRPM2 ion channel were decreased with the application of calcium channel antagonists.

CONCLUSIONS: The oxidative injury, cytokine levels, caspase-3, TRPM2 ion channel distribution and TRPM2 ion channel antagonist increasing in I/R were suppressed with the application of 8-br-cADPR. This study has been supported by Ataturk University BAP (2014/146).
OC11 Individual Variation of Leptin, Nesfatin-1 and Irisin Levels During Aerobic Exercise Performed Morning and Night in Trained and Untrained Male Subjects

Serdar Algül1, Öğuz Öçelik2
1Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology, Van, Turkey
2Fırat University, Faculty of Medicine, Department of Physiology, Elazığ, Turkey

Aim: Exercise is an important factor to regulate energy homeostasis. However, it is unclear if exercise modify or have an effect on energy homeostasis via stimulating energy-related hormones. Skeletal muscle and fat tissue are endocrine acting organs that produced leptin, nesfatin-1 and irisin hormones which regulate vital physiological processes in energy-metabolic systems. We have investigated effects of acute aerobic exercise performed morning and night on leptin, nesfatin-1 and irisin levels in trained and untrained subjects.

Methods: Thirty trained (18.3±0.1 years) and 30 untrained (18.6±0.1 years) male subjects performed two aerobic running exercise (3 days between test) to subjects’ 50-85% of maximal heart rate for 30 min. The written informed consent approved by the institutional ethics committee were taken. Pre-post exercise venous blood samples were taken and analyzed for leptin, nesfatin-1 and irisin using a ELISA. Paired and unpaired t-tests used to analyse the data

Results: We observed increase in irisin levels in all subjects (p<0.001). Significant increases observed in nesfatin-1 levels in night exercise in both groups (p<0.05). Importantly, leptin and nesfatin-1 levels varied among subjects. In trained and untrained groups, leptin and nesfatin-1 levels increased in 4 (13%) vs 12 (40%) subjects in morning and 9 (30%) vs 10 (33%) subjects in night exercise, while they decreased in 5 (16%) vs 7 (23%) subjects in morning and 6 (20%) vs 3 (10%) subjects in night exercise, respectively.

Conclusions: Exercise may provide additional effects on increase energy consumption via alteration of irisin levels. However, increase in leptin and nesfatin-1 levels on reduction of food intake may not be applicable due to individual variation. Interestingly, exercise-induced energy imbalance was caused to be a decrease leptin and nesfatin-1 levels that may increase food intake in some subjects. Consequently, exercise has strong beneficial effects on increased energy consumption but not on appetite regulation.

OC12 Investigation of Hemorheological Parameters and Response to Oxidative Stress Before and After the Treatment in Newly-Diagnosed Patients with Chronic Obstructive Pulmonary Disease

Erhan Uğuru1, Emine Kılıç Toprak1, Ilknur Can1, Yusuf Ekbiç2, Vural Küçükataş3, Göksel Altınşık1, Melek Bor Küçükataş2
1Pamukkale University, Faculty of Medicine, Department of Chest Disease, Denizli, Turkey
2Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey

Aim: Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation associated with increased inflammatory response. Lungs are highly susceptible to oxidative damage because of rich vascular bed and large surface area. The aim of the current study was to determine alterations in hemorheology (erythrocyte aggregation and deformability) and oxidative stress (total oxidant/antioxidant status [TOS/TAS], oxidative stress index [OSI]) in response to treatment in newly-diagnosed COPD patients.

Methods: The study comprised 13 newly-diagnosed COPD patients (58.46±2.69 years), 12 controls (54.16±3.29 years). The severity of COPD was determined as stage I (n=3), stage II (n=10) according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. Short-acting beta-2 agonists was applied to stage I COPD patients, stage II patients were treated with long-acting anticholinergics for 1 month. Hemorheological parameters were measured by an etkacytometer. TOS and TAS were determined using a kit and OSI was calculated.

Results: FEV1 and MEF 25/75 were increased after treatment (p=0.046, p=0.045, respectively). TOS (30.67±3.84) and OSI of COPD patients (2.25±0.29) were higher than controls (8.84±1.69, 0.58±0.13, respectively). TAS decreased after treatment. Differences were statistically significant (p=0.0001, p=0.033, respectively). No alteration was observed in erythrocyte aggregation and deformability.

Conclusions: According to the current treatment protocol for stage I-II COPD, only symptomatic treatment is applied and steroids are not used for suppressing the inflammation. This treatment does not seem to provide adequate contribution to the reduction of oxidative stress and further decreases antioxidant status as well. Based on the results of our study, it can be speculated that usage of treatment methods which will decrease oxidative stress and improve hemorheology might be a suitable approach in patients with COPD.

OC13 Investigation of Protective Effects of Alpha Crystallin Against Ischemia-Reperfusion Induced Acute Lung Injury

Seda Kocak1, Ibrahim Güner2, Onur Yaman1, Nermın Yelmen1, Elf Güzel1, Tuba Eki2, Emine Gülderen Şahin1
1Department of Physiology, Istanbul University, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
2Department of Embryology and Histology, Istanbul University, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey

Aim: This study aimed to investigate the protective effect of α-crystallin against acute lung injury via oxidative stress parameters. Antioxidant capacity of alpha crystallin, which is one of the main lens proteins in vertebrates has shown in previous studies. THODS: In our study, 24 Sprague-Dawley male rats were divided into three groups: control, ischemia-reperfusion (IR), and alpha-crystalline+IR. After anesthesia, infrarenal abdominal aorta (IAA) of control group animals was dissected by closing incision and ischemia-reperfusion was not applied. IAA of IR group animals were clamped for 90 minto induce ischaemia. Then, clamp was removed for 180 min of reperfusion. IR protocol was administered by giving alpha-crystalline [50 mg/100 g body weight] one hour before IR. To obtain bronchoalveolar lavage fluid (BALF), 5 ml physiological saline was administered intratracheally. The liquid was withdrawn from the trachea until 90% or more of the given amount of saline solution was obtained. This was applied three times. Extracted lung samples, blood, and BALF were stored in -80°C for biochemical analysis. The findings ob-
tained from biochemical studies were analyzed using GraphPad Prism version 5.0 for Windows statistical software package. One-Way ANOVA test followed by Bonferroni post hoc tests was used. RESULTS: When we examined the ELISA analysis of lung tissues, blood and BALF, oxidative parameters TOC and MDA of IR group increased whereas SOD and TAC decreased. When alpha-crystalline + IR was compared with the IR, MDA and TOC levels of alpha-crystalline+IR group decreased; SOD and TAC levels increased. When we compared lung tissues of IR group to alpha-crystalline+IR group, MDA (26.12±1.39 nm/100 mg protein; 18.54±0.71 nm/100 mg protein, p<0.001) and TOS levels (7.70±0.34 nm/100 mg protein, 5.62±0.30 nm/100 mg protein, p<0.001) decreased significantly while SOD (20.25±1.55 ng/100 mg protein; 26.66 ± 0.73 ng/100 mg protein, p<0.01) and TAC levels (14.91±1.46 U/100 mg protein; 17.31±0.73 U/100 mg protein, p<0.01) increased significantly.

CONCLUSIONS: All in all, our biochemical results concluded that alpha crystalline may prevent acute lung injury induced by IR.

OC15
What are the Mechanisms Mediating the Neuroprotective Effects of Ozone in Diabetic Neuropathy?
Haydar Ali Erken1, Gülten Erken1, Raziye Akçılar1,
Fatma Emel Koçak2, Arzu Yav1, Hasan Şimşek1,
Gözde Özge Önder1, Aydin Akçılar1, Osman Genç2
1Balıkesir University, Faculty of Medicine, Department of
Physiology, Balıkesir, Turkey
2Dumlupınar University, Faculty of Medicine, Department of
Biochemistry, Kütahya, Turkey
3Dumlupınar University, Faculty of Medicine, Department of
Histology and Embryology, Kayseri, Turkey
4Erciyes University, Faculty of Medicine, Department of Histology and
Embryology, Kayseri, Turkey
5Dumlupınar University, Faculty of Medicine, Experimental
Research Unit, Kütahya, Turkey

AIM: Ozone, which has therapeutic effect in many pathologies, partially prevented diabetic neuropathy in rats in our previous study. In the present study, it was investigated that the mechanisms mediating the neuroprotective effects of ozone in diabetic neuropathy.mly divided into 6 groups (n=7): control (C), ozone (O), diabetic (D), ozone-treated diabetic (DO), insulin-treated diabetic (DI), and ozone- and insulin-treated diabetic (DOI). Diabetes was induced by a single injection of streptozotocin (60 mg/kg, 0.1), after which insulin was administered (3 IU, i.p., once a day) to the DI and DOI groups for 6 weeks, and 1.1 mg/kg (50 µg/ml, i.p., once a day) ozone was given to the O, DO, and DOI groups for 6 weeks. 6 weeks after the induction of diabetes, the electrophysiological, biochemical and histopathological tests were made. Data were analysed using the one way ANOVA and post hoc Tukey tests. p<0.05 was considered statistically significant.

RESULTS: While the blood glucose, HbA1c, plasma total oxidant status, oxidative stress index and apoptotic cell number of the D group were significantly higher than the C and O groups, the same values of DO, DI and DOI groups were significantly lower than the D group. While the nerve conduction velocity, amplitude of compound action potential, axon number and endoneural capillary number of the D group were significantly lower than the C and O groups, the same values of DO, DI and DOI groups were significantly higher than the D group.

CONCLUSIONS: Consistent with previous studies, ozone reduced the blood glucose and HbA1c levels, and partially prevented diabetic neuropathy in this study. These findings indicate that the neuroprotective effect of ozone in diabetic neuropathy are mediated through oxidative stress, vascular and apoptotic mechanisms. We believe that ozone, as a potential therapeutic agent for diabetic neuropathy, a focus on ozone and a molecule to be investigated in detail.
OC16
Silencing HMGB1 Expression Inhibits Myocardial Apoptosis-induced by Doxorubicin via TLR4 Dependent Manner Through MAPK Signal Transduction
Eyylem Taskın Güven1, Celal Güven1, Melda Sarıman1, Zeliha Emrence1, Sema Abacı1, Neslihan Sırma Emkeç1, Handan Akçakaya2
1The Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Bilim University, Istanbul, Turkey
2The Department of Biophysics, Faculty of Medicine, University of Adiyaman, Adiyaman, Turkey
AIM: Doxorubicin (DOX) is toxic on many tissues including the heart, but is an anticancer drug widely used for cancer treatment. It is not still completely understood the mechanism of DOX-induced heart failure. It, therefore, has not been developed a treatment for DOX-induced heart failure. High mobility group box 1 (HMGB1) is a chromatin protein highly conservative among the species and AMP-activated kinase (AMPK) have connection between cell’s survival and death pathways. The aim of the study was to investigate whether DOX-induced heart failure mediates HMGB1 to initiate the apoptosis through (AMPK-a1) or not.
METHODS: It was created 4 groups as a control, HMGB1 inhibition (HMGB1), DOX, HMGB1+DOX by using H9c2 cell line. Silencing HMGB1 expression was performed by using specific small interfering RNA (10 nM). DOX was used at 2 µM concentration for 36 and 48 hours. The silencing HMGB1 and DOX were performed cotreatment. Western blot and qRT-PCR identify protein and genes expressions related to apoptosis. Apoptosis was determined by TUNEL and FITC-IETD-FMK. Statistical analysis was performed by one-way-ANOVA.
RESULTS: ERK1/2 and AMPK gene expressions were down by DOX, although P38 expression was high by DOX. HMGB1+DOX inhibition caused to low expression of ERK1/2, AMPK but not P38 gene expression. Although DOX gave rise to decrease AMPK, P-AMPK, ERK1/2, PERK1/2, P38, JNK protein expressions, increase caspase-3 protein expression, HMGB1+DOX inhibition led to increase AMPK, P-AMPK, ERK1/2, PERK1/2, P38, JNK and decrease caspase-3 protein expression. The number of TUNEL positive and active caspase-8 cells at ADR group was higher than control and HMGB1 (p<0.01). However, the number of TUNEL positive and active caspase-8 cells at HMGB1+DOX was lower vs DOX group (p<0.01).
CONCLUSIONS: HMGB1 plays important role as amplifying on DOX toxicity on heart by TLR4 via MAPK signal transduction.
This study was supported by TUBITAK (114S118).

OC17
The Effect of Resveratrol and Glibenclamide on Ischemia/Reperfusion Induced Arrhythmias in STZ-induced Diabetic Rats
Salih Tung Kaya1, Oğulcan Talat Özaslan2, Didem Ekşioglu2, Firdevs Erüm3, Selçuk Yaşar3, Ömer Bozdogan3
1Faculty of Arts and Science, Biology Department, Duzce University, Duzce, Turkey
2Faculty of Arts and Science, Biology Department, Abant Izzet Baysal University, Bolu, Turkey
AIM: Diabetes mellitus is highly associated with cardiovascular complications, which is one of the major causes of morbidity and mortality in developing countries. The present study was aimed to investigate the effect of resveratrol alone and its combination with glibenclamide on ischemia and reperfusion induced arrhythmias in STZ-induced diabetic rats.
METHODS: In this study, 37 male Sprague Dawley rats, 4-5 months of age, were used. Diabetes mellitus was induced by intraperitoneal injection of STZ (65 mg/kg). Blood glucose levels above 250 mg/dl were accepted as diabetic. Resveratrol (5 mg/kg, ip) and glibenclamide (5 mg/kg, ip) were freshly prepared and daily administered for 6 week. Heart rate, blood pressure incidence of arrhythmias and arrhythmias score were determined. The arrhythmias was identified in accordance with the Lambeth Conventions (3). Data was analyzed by one-way ANOVA with LSD post hoc test.
RESULTS: Resveratrol and its combination with glibenclamide resulted in significantly decreased arrhythmia score at reperfusion (p<0.05). Arrhythmic period, duration of other types of arrhythmia and incidence of other types of arrhythmias during reperfusion were found to be significantly decreased in diabetic rats treated with resveratrol and its combination with glibenclamide (p< 0.05).
CONCLUSIONS: Arrhythmia score and incidence of arrhythmias during reperfusion were decreased in diabetic rats receiving resveratrol and its combination with glibenclamide. Further studies are needed to understand the underlying mechanism of cardio protective effect of resveratrol in diabetes mellitus. This study was supported by the Abant Izzet Baysal University Research Fund.

OC18
Effects of Quercetin on Cyclophosphamide-induced Cardiotoxicity in Rats
Volkan Gelen1, Emin Şengül2, Semin Gedikli3, Seçkin Özanlar4, Cihan Gür4, Adem Kara3, Fikret Celebi3, Ali Çınar3
1Kafkas University Veterinary Faculty Department of Physiology, Kars, Turkey
2Atatürk University Veterinary Faculty Department of Physiology, Erzurum, Turkey
3Atatürk University Veterinary Faculty Department of Histology, Erzurum, Turkey
4Atatürk University Veterinary Faculty Department of Biochemistry, Erzurum, Turkey
AIM: Cyclophosphamide (CYP) is an anti-carcinogenic substance and causes cardiotoxicity and disorders of vascular contraction-relaxation mechanism. The study aimed to investigate protective effects of Quercetin(Q) on cardiac injury and thoracic aorta smooth muscle contraction-relaxation responses in the CYP-induced rat model.
METHODS: In our study, we used 40 male Sprague-Dawley rats (200-250g). Rats were assigned to five groups(8 each group): Control, CYP, Q50+CYP, Q100+CYP and Q100. For seven days, the control group was given intragastric (i.g.) the cornoil(1ml) as solvent of Q. CYP group was given cornoil for seven days and gave intraperitoneal(i.p.) single-dose of CYP(200mg/kg) on the seventh day. Rats in groups Q50+CYP and Q100+CYP were given 50 and 100mg/kg dose of Q(i.g.) dissolved in cornoil for 7 days. These two groups rats were given a single dose of CYP(200mg/kg,i.p.) on the seventh day. Rats in Q100 group was given 100mg/kg dose of Q for seven days. On the eighth day of experiment, blood and tissue samples were collected from all groups of rats after sacrifice. In blood samples, the levels of Troponin-
The Effect of Phenoxybenzamine to Decreased Heart Muscle Contractility After in vitro Constituted Ischemia

Z Isık Solak Görmüş1, Hatice Solak1, Raviye Özen Koca1, Zafer Şahin2, Selim Kutlu2, Niyazi Görmüş2
1Department of Physiology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
2Department of Cardiovascular Surgery, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey

AIM: An ischemia-reperfusion injury may occur in heart myocardium following open heart surgery. This may cause mortality after cardiac surgery due to diminished contractility of the heart. Phenoxybenzamine is an agent causing vascular dilation and has positive inotropic and chronotropic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

METHODS: Patients were divided into 4 groups: Phenoxybenzamine control, ischemia hypotermia control, ischemia-hypotermia phenoxybenzamine (treatment), phenoxybenzamine ischemia-hypotermia (prophylactic). In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic agents. Cumulative dose of H2O2 was introduced to establish ischemia. In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

RESULTS: Level of MDA in CYP and Q100+CYP groups were significantly increased compared with control group (p<0.0001). SOD activity and GSH levels were significantly decreased in CYP group compared to control and Q100+CYP groups (p<0.0001). In isolated-organ bath system, the contraction and relaxation responses of aortic tissue were evaluated according to PH[10^-2-10^-5] and ACh[10^-6-10^-4] doses of and inducing sequences. Responses coming from CYP group were decreased significantly compared to other groups (p<0.05). Serum Troponin-I, CK-MB and CK levels significantly increased in CYP group compared to other groups (p<0.05). The histopathological examination of cardiac tissue showed that CYP group has considerably myositis and myofibril degeneration in addition to dramatically increasing apoptotic cell density compared to other groups (p<0.05).

CONCLUSIONS: The present findings revealed that especially higher dose of Q has preventive effect on degenerative and toxic effects of CYP of the heart and thoracic aorta tissues.

The Effect of Phenoxybenzamine to Decreased Heart Muscle Contractility After in vitro Constituted Ischemia

Z Isık Solak Görmüş1, Hatice Solak1, Raviye Özen Koca1, Zafer Şahin2, Selim Kutlu2, Niyazi Görmüş2
1Department of Physiology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
2Department of Cardiovascular Surgery, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey

AIM: An ischemia-reperfusion injury may occur in heart myocardium following open heart surgery. This may cause mortality after cardiac surgery due to diminished contractility of the heart. Phenoxybenzamine is an agent causing vascular dilation and has positive inotropic and chronotropic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

METHODS: Patients were divided into 4 groups: Phenoxybenzamine control, ischemia hypotermia control, ischemia-hypotermia phenoxybenzamine (treatment), phenoxybenzamine ischemia-hypotermia (prophylactic). In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic agents. Cumulative dose of H2O2 was introduced to establish ischemia. In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

RESULTS: Level of MDA in CYP and Q100+CYP groups were significantly increased compared with control group (p<0.0001). SOD activity and GSH levels were significantly decreased in CYP group compared to control and Q100+CYP groups (p<0.0001). In isolated-organ bath system, the contraction and relaxation responses of aortic tissue were evaluated according to PH[10^-2-10^-5] and ACh[10^-6-10^-4] doses of and inducing sequences. Responses coming from CYP group were decreased significantly compared to other groups (p<0.05). Serum Troponin-I, CK-MB and CK levels significantly increased in CYP group compared to other groups (p<0.05). The histopathological examination of cardiac tissue showed that CYP group has considerably myositis and myofibril degeneration in addition to dramatically increasing apoptotic cell density compared to other groups (p<0.05).

CONCLUSIONS: The present findings revealed that especially higher dose of Q has preventive effect on degenerative and toxic effects of CYP of the heart and thoracic aorta tissues.

The Effect of Phenoxybenzamine to Decreased Heart Muscle Contractility After in vitro Constituted Ischemia

Z Isık Solak Görmüş1, Hatice Solak1, Raviye Özen Koca1, Zafer Şahin2, Selim Kutlu2, Niyazi Görmüş2
1Department of Physiology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
2Department of Cardiovascular Surgery, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey

AIM: An ischemia-reperfusion injury may occur in heart myocardium following open heart surgery. This may cause mortality after cardiac surgery due to diminished contractility of the heart. Phenoxybenzamine is an agent causing vascular dilation and has positive inotropic and chronotropic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

METHODS: Patients were divided into 4 groups: Phenoxybenzamine control, ischemia hypotermia control, ischemia-hypotermia phenoxybenzamine (treatment), phenoxybenzamine ischemia-hypotermia (prophylactic). In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic agents. Cumulative dose of H2O2 was introduced to establish ischemia. In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

RESULTS: Level of MDA in CYP and Q100+CYP groups were significantly increased compared with control group (p<0.0001). SOD activity and GSH levels were significantly decreased in CYP group compared to control and Q100+CYP groups (p<0.0001). In isolated-organ bath system, the contraction and relaxation responses of aortic tissue were evaluated according to PH[10^-2-10^-5] and ACh[10^-6-10^-4] doses of and inducing sequences. Responses coming from CYP group were decreased significantly compared to other groups (p<0.05). Serum Troponin-I, CK-MB and CK levels significantly increased in CYP group compared to other groups (p<0.05). The histopathological examination of cardiac tissue showed that CYP group has considerably myositis and myofibril degeneration in addition to dramatically increasing apoptotic cell density compared to other groups (p<0.05).

CONCLUSIONS: The present findings revealed that especially higher dose of Q has preventive effect on degenerative and toxic effects of CYP of the heart and thoracic aorta tissues.

The Effect of Phenoxybenzamine to Decreased Heart Muscle Contractility After in vitro Constituted Ischemia

Z Isık Solak Görmüş1, Hatice Solak1, Raviye Özen Koca1, Zafer Şahin2, Selim Kutlu2, Niyazi Görmüş2
1Department of Physiology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
2Department of Cardiovascular Surgery, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey

AIM: An ischemia-reperfusion injury may occur in heart myocardium following open heart surgery. This may cause mortality after cardiac surgery due to diminished contractility of the heart. Phenoxybenzamine is an agent causing vascular dilation and has positive inotropic and chronotropic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

METHODS: Patients were divided into 4 groups: Phenoxybenzamine control, ischemia hypotermia control, ischemia-hypotermia phenoxybenzamine (treatment), phenoxybenzamine ischemia-hypotermia (prophylactic). In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic agents. Cumulative dose of H2O2 was introduced to establish ischemia. In all groups atrium tissues were placed into isolated organ bath and washed for 3 hours to diminish the anaesthetic effects. In this study effects of phenoxybenzamine on heart muscle have been investigated by an in vitro study designed with ischemia-reperfusion injury model on human arium.

RESULTS: Level of MDA in CYP and Q100+CYP groups were significantly increased compared with control group (p<0.0001). SOD activity and GSH levels were significantly decreased in CYP group compared to control and Q100+CYP groups (p<0.0001). In isolated-organ bath system, the contraction and relaxation responses of aortic tissue were evaluated according to PH[10^-2-10^-5] and ACh[10^-6-10^-4] doses of and inducing sequences. Responses coming from CYP group were decreased significantly compared to other groups (p<0.05). Serum Troponin-I, CK-MB and CK levels significantly increased in CYP group compared to other groups (p<0.05). The histopathological examination of cardiac tissue showed that CYP group has considerably myositis and myofibril degeneration in addition to dramatically increasing apoptotic cell density compared to other groups (p<0.05).

CONCLUSIONS: The present findings revealed that especially higher dose of Q has preventive effect on degenerative and toxic effects of CYP of the heart and thoracic aorta tissues.
OC21
Effect of Caffeine on Vascular Smooth Muscle Cell Proliferation and Calcium Level
Ayşe Doğan, Zehra Gül Koçaklı, Zehra Çiček, Kübra Akilloğlu, Halil Şener, Osman Sağlam
Department of Medical Physiology, Cukurova University, Adana, Turkey

AIM: Caffeine has been reported to reduce vascular smooth muscle cell proliferation. Increasing intracellular calcium suggests the role of vascular smooth muscle cell proliferation. In this study, we aimed to investigate caffeine’s effects of the vascular smooth muscle cell proliferation and intracellular calcium levels.

METHODS: In our study, Wistar male rats (180-200 g) were used for animal experiments. Primary culture cells were obtained from aortic smooth muscle tissue of rats. The number of cells per milliliter was determined by counting the cells obtained on thoma counting chamber. The cultivation was homogeneously made into ninety-six culture vessels in equal numbers. After 24 h of incubation, the cells were treated with 10 µM, 100 µM and 1000 µM caffeine. At the end of 24 h of incubation period, cell proliferation and viability were assessed spectrophotometrically by MTT (tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolum bromide). Intracellular calcium level was measured by cell microspectrofluorometric method. Before measurement the cells were plated on coverslips of 24 mm diameter. Calcium indicator Fura2-AM was incubated for 1 h at 37 °C. The cells were administered 1000 µM caffeine during measurement. The data which were analyzed by ANOVA and paired t-tests were handled with SPSS.

RESULTS: Caffeine administered in 100 µM (p<0.001) and 1000 µM (p<0.01) concentrations caused a significant reduction in cell proliferation when compared to the control group. Caffeine with 1000 µM concentration caused higher reduction in the cell proliferation, when compared to the concentrations of 10 µM (p<0.05) and of 100 µM (p<0.001). Intracellular calcium level significantly decreased with 1000 µM caffeine administration (p<0.001).

CONCLUSIONS: According to these findings, caffeine causes a reduction in cell proliferation and this reduction depends on the dose. This finding can be considered to be associated with reduced intracellular calcium reduction.
Aykut Göktürk Üner

NMDA-GluN2B Receptor Antagonist

Anti-obesity and Anti-diabetic Effects of Ifenprodil, a Selective NMDA-GluN2B Receptor Antagonist

CONCLUSIONS: Here, we provided evidence that NBO treatment is beneficial after newborn HI, which was associated with improved neuronal survival and ERK-1/2 and CREB activities. This data encourages proof-of-concept studies in human hypoxia-ischemia treatment.

AIM: Several methodological approaches including the administration of hyperosmolar solutions have been described to temporarily increase paracellular permeability of therapeutic drugs into the brain in pathological conditions such as epilepsy and brain tumors. The limitations of this methodological approach include certain side effects sourced by the inevitable exposure of the brain tissue to potentially neurotoxic circulatory substances. Therefore, defining means of modulation of hyperosmolar blood-brain barrier (BBB) opening may serve both to elucidate the mechanisms of BBB disruption and to reduce the potential brain damage in this setting. In this context, the aim of this study was to explore whether catalase-polyethylene glycol (PEG) as an antioxidant agent may exert protection against BBB disruption induced by hyperosmolar mannitol in rats.

METHODS: In this study, 84 adult male Wistar albino rats (10-12 weeks) weighing 230-280 g were used. In order to open the BBB, a hyperosmolar mannitol solution (25%; 1.6 M) was infused through a catheter inserted into the right internal carotid artery for 30 s at a rate of 0.25 mL kg−1 s−1. Catalase-PEG (2.500 IU/0.2 mL) was administered intravenously 2 min before mannitol treatment. Evans blue (EB) dye and horseradish peroxidase (HRP) were used as markers of BBB disruption.

RESULTS: A significant increase of EB extravasation was observed unilaterally in the right cerebral cortex, right hippocampus and ce-rebellum by mannitol infusion compared with sham animals (p<0.01), and preconditioning with catalase-PEG significantly reduced the increased EB extravasation in these regions (p<0.01). Similarly, a significant coloration of HRP extravasation was observed unilaterally in the right cerebral cortex, right hippocampus and ce-rebellum by mannitol infusion compared with sham animals, and preconditioning with catalase-PEG significantly reduced the HRP extravasation in these regions.

CONCLUSIONS: Our results indicate that regulation of oxidant/antioxidant status modulates the barrier function in brain microvessels and catalase-PEG could be useful for the improvement of BBB integrity against hyperosmolar BBB disruption.
TRPM2 Antagonist ACA Ameliorates Okadaic Acid-induced Oxidative Stress and Neuroinflammation in Rats
Murat Çakır, Halil Düzova, Suat Tekin, Tuba Özoğer
Department of Physiology, İnönü University, Medical School, Malatya, Turkey.

AIM: Okadaic acid (OKA) is a specific protein phosphatases inhibitor and induced impairments in cognitive function and free radical homeostasis. Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress sensing calcium-permeable channel that is thought to contribute to calcium dysregulation associated with neurodegenerative diseases, including Alzheimer’s disease. This study aimed to investigate the oxidative stress and neuroinflammation effect of TRPM2 inhibitor N-(p-Amlycinnamoyl) anthranilic acid (ACA) in a neurodegenerative model induced by OKA.

METHODS: Male Sprague-Dawley rats (n=50) were randomly divided into five groups; i) control, ii) sham: rats were injected icv with artificial cerebrospinal fluid (aCSF) and treated with vehicle for 13 days, iii) ACA: rats were treated with ACA intraperitoneally (ip) 25 mg/kg/day for 13 days, iv) OKA: OKA was dissolved in aCSF and injected icv (200 ng) in a volume of 10 μl bilaterally and v) OKA+ACA: rats were injected icv with OKA (200 ng) and treated with ACA ip 25 mg/kg/day for 13 days. At the end of the experiment, the rats were sacrificed by taking blood of their hearts, then the hippocampus and cerebral cortex of rats were removed. SOD, GSH-PX enzyme activation, and MDA and GSH, TNF-α, IL-1β levels in tissues were measured.

RESULTS: While the MDA, IL-1β, TNF-α levels of tissues were significantly increased in OKA group, SOD, GSH-PX enzyme activation and GSH levels were decreased compared to all other groups (p<0.05). OKA+ACA treatment increased SOD and GSH-PX enzyme activation and GSH levels, and conversely decreased the levels of MDA, TNF-α and IL-1β in comparison to OKA group.

CONCLUSIONS: Our results suggested that ACA supplementation prevented oxidative stress and neuroinflammation in OKA-induced neurodegeneration. This study was supported İnönü University BAP (2015/105).

The Effects of Caffeine Application Before Psychological Stress on Anxiety Level and Cognitive Functions
Hülya Keleş1, Rabia Hamamcı1, Nurfitnat Ellek1, Nabilah Salehin1, Dilek Özbeyli2, Meral Yüksel1, Dilak Akakin1, Damascus Goçekolu2, Özgür Kasmay Çakır1
1School of Medicine, Marmara University, Istanbul, Turkey 2Department of Physiology, Marmara University, Istanbul, Turkey

AIM: Caffeine is an addictive substance which is found in food and drinks. Psychological stress affects cognitive functions negatively. Caffeine can be protective in stressful conditions; but there is no clear information about that. This study aimed to investigate the effects of acute and chronic coffee application before acute and chronic stress on anxiety-like behaviour and working memory.

METHODS: Acute and chronic stress were applied to male Sprague-Dawley rats (200-250 g, n=42). Acute and chronic caffeine (3 mg/kg) were given rats intraperitoneally 5 min before stress. Anxiety was evaluated with Holeboard and cognitive functions was evaluated by Object Recognition Test. The measurements of glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), superoxide dismutase and catalase, luminol and lucigenin chemiluminescence in brain tissue and histological evaluations were done. Statistical analyses were done with GraphPad prism Program by t-test, ANOVA and Tukey test. p<0.05 is accepted as significant.

RESULTS: Caffeine increased cognitive function in chronic stress (p<0.05-0.01) Anxiety increased in stress groups. Caffeine decreased anxiety (p<0.05-0.01). Chronic caffeine decreased MPO (p<0.05) which was increased by acute stress (p<0.05). Caffeine blocked the increase which was done by chronic stress (p<0.05-0.01). Acute stress increased MDA (p<0.001) and lucigenin (p<0.001). Chronic caffeine decreased them (p<0.01). Acute caffeine decreased MDA (p<0.01). Acute stress increased NO (p<0.05) and caffeine applications decreased them (p<0.05-0.001). Acute caffeine decreased SOD (p<0.001) which was increased by acute stress (p<0.001). Acute caffeine increased GSH(p<0.001) and decreased luminol (p<0.05). Neuronal injury which was increased in stress histologically was decreased by caffeine. It is more prominent in chronic caffeine.

CONCLUSIONS: It is seen that acute and chronic caffeine decreased anxiety and increased cognitive function which was decreased especially by chronic stress. It is thought that caffeine decreased the oxidative injury which was increased by stress in brain tissue.
The Effect of Dental Bleaching Agent and α-Tocopherol on Dental Pulp Stem Cell

Mukaddes Mergen Dalyanoğlu1, Mücahit Seçme2, Canan Eroğlu2, Melek Tuğrul Ateş1, Yusuf Ekbici3, Vural Küçükatay1, Yavuz Dodurga2, Sebahat Turgut4
1Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey
2Pamukkale University, Faculty of Medicine, Department of Medical Biology, Denizli, Turkey

Aim: Tooth bleaching agents contain peroxide and lead to cellular damage. Therefore, our study aims to find the effects of application of hydrogen peroxide (HP) on dental pulp stem cell (DPSC) cultures and whether vitamin E has any protective effects against the potential damage to occur.

Methods: Study groups were: Control (C), 2 Hydrogen Peroxide (2HP) (2 µg/ml), 6 Hydrogen Peroxide (6HP) (6 µg/ml), vitamin E (100 µM)+2HP (E2HP), vitamin E (100 µM)+6HP (E6HP) groups. DPSC treated according to assigned groups, the cells were removed from their media at 0, 24, 72 hours. DNA damage was measured using comet assay. TNF-alpha, IL-6, TOS, TAS levels were measured using ELISA method. Kruskal-Wallis variance analysis of the data and Mann Whitney-U Test with Bonferroni correction were used for the analysis of the data.

Results: Tail intensity was observed to significantly increase in all HP groups compared to control group at all time points (p<0.001). Analyses performed at 24 h showed significant decrease in vitamin E groups compared to 2HP group (p<0.001). Tail moment was found significantly decreased in vitamin E groups compared to 6HP group at 0 h and 72 h, respectively (p<0.015 and p<0.001). A comparison of TNF-alpha, IL-6, TOS and OSI levels of the study groups did not reveal significant differences at all time points.

Conclusions: Previous studies showed that osteonecrosis could be induced with administration of a single dose of glucocorticoid and necrotic lesions could be seen after administration of MPA for two weeks. Therefore, the results of our study with administration of MPA for 2 weeks showed that ALA treatment which decreases in averages of vitamin E groups compared to 2HP group (p=0.000). Tail moment was observed significantly decreased in vitamin E groups compared to 6HP group at 0 h and 72 h, respectively (p<0.015 and p<0.001). A comparison of TNF-alpha, IL-6, TOS and OSI levels of the study groups did not reveal significant differences at all time points.

Conclusions: As a result, we suggest that HP dosages used lead to genotoxicity and vitamin E decreases HP-induced DNA damage. Our results indicate that the HP dosages used had no effect on the oxidative and inflammatory processes.
Antioxidant Effects of Melatonin on Ovarian Ischemia-Reperfusion Injury of Rats

Beril Yüksel1, Bilal Altan2, Ramazan Yüksel3, Ali Seven4, Ugur Keskin4, Murat Özkęnci5, Bülent Uysal6
1Department of Gynecology and Obstetrics, Dumlupınar University, Medical Faculty, Kutahya, Turkey
2Department of Pediatric Surgery, Gülhane Military Medical Faculty, Ankara, Turkey
3Department of Physiology, Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey
4Department of Gynecology and Obstetrics, Gülhane Military Medical Faculty, Ankara, Turkey
5Department of Gynecology and Obstetrics, Akdeniz University, Medical Faculty, Antalya, Turkey
6Department of Physiology, Gülhane Military Medical Faculty, Ankara, Turkey

AIM: Ovarian torsion is a rare gynecological emergency that can lead to serious problems as infertility. In this study, we aimed to investigate the possible beneficial effects of melatonin on oxidative stress injury in ovarian ischemia-reperfusion model.

METHODS: A total of 35 female Wistar-Albino rats in 5 groups (n=7) was presented. First two groups constituted sham (Group I) and detorsion control groups (Group II). Group III: the rats received 10 mg/kg melatonin 30 minutes before torsion; Group IV: melatonin was injected 30 minutes before detorsion; Group V: melatonin was injected twice, before torsion and detorsion. As markers of oxidative stress, the total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), myeloperoxidase (MPO), interleukin 1beta (IL1 β) and malondialdehyde (MDA) levels were investigated. Tissue samples were stained with hematoxylin-eosin and histopathological changes (edema, hemorrhage, inflammation, necrosis) were scored; and the tissue inducible nitric oxide synthase (iNOS) expressions were also assessed by immunohistochemistry. The Kruskal-Wallis and the Mann-Whitney U tests were used for the statistical analysis.

RESULTS: When compared to control group, in all treatment groups (Group III, IV, V) the TAS levels were increased, whereas TAS and MDA were decreased statistically significant (p<0.05). In addition, in Group V, when compared to controls, OSI and MPO levels were also decreased significantly (p<0.05). The scores of histopathological changes were increased in Group II; decreased in Group III and V significantly (p<0.05). iNOS staining results were also supportive of these findings.

CONCLUSIONS: Melatonin reduced the severe oxidative stress and increased antioxidant capacity in the ovarian ischemia-reperfusion model. In addition, reduction of OSI levels especially in Group V supports the opinion that melatonin injection may has a prophylactic and therapeutic importance in ovarian torsion. However, further studies are needed to understand the underlying mechanism of melatonin administration in ovarian torsion.

Induction of Behavioral and Histological Alterations in Rats by Chronic Consuming of Artificial Sweeteners: A Comparative Study

Mümin Alper Erdoğan1, Oytun Erbaş2, Asghar Khalinezhad2, Fulya Tuzcu Gürkan2, Gürkan Yiğitüürk3, Dilek Taşkın3
1Department of Physiology, Ege University School of Medicine, İzmir, Turkey
2Department of Physiology, İstanbul Bilim University School of Medicine, İstanbul, Turkey
3Department of Histology and Embryology, Ege University School of Medicine, İzmir, Turkey

AIM: Previous studies have reported the negative health outcomes (obesity, type 2 diabetes mellitus and metabolic syndrome) of sugar-sweetened beverages. Therefore, many people turned to artificial sweeteners to lessen the risk of these diseases. However, it has been suggested that artificial sweeteners may also have harmful or unclear effects with regard to regulation of energy balance or other metabolic activities. In our study, we aimed to compare the neurobehavioral effects of most widely used artificial sweeteners including aspartame, sucralose, and saccharin in rats. METHODS: Twenty-four adult male Sprague-Dawley rats were included in the study. All animals were housed with unlimited access to regular chow. Control group (n=6) received regular tap water while other groups received aspartame (3 mg/kg/day, n=6) or saccharin (3 mg/kg/day, n=6) or sucralose (1.5 mg/kg/day, n=6) in the drinking water. Following 6 weeks, passive avoidance learning (PAL) test was performed to evaluate the neurobehavioral effects of sweeteners. Then, brains were removed and assessed for hippoc...
campal neuronal (CA1-CA3) density and GFAP immunohistochemistry. RESULTS: Our results demonstrated that chronic consumption of sweeteners significantly impaired PAL performance in all groups compared to control (p<0.0001). Furthermore, histological evaluation of hippocampal CA1-CA3 areas revealed significantly lower neuronal cell numbers and increased GFAP expression in aspartame (p<0.0001) and sucralose-treated (p<0.05) groups compared to control. CONCLUSIONS: It can be concluded from these data that long-term consumption of artificial sweeteners may have harmful effects on learning and memory performance and hippocampal neuronal density in rats.

OC34
Lignosus Rhinocerotis Protects Axotomized Sensory Neurones in vitro
Ramazan Üstün1, Elif Kaval Öğuz1
1Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology, Van, Turkey

AIM: To test whether hot water extract (HWE) and cold water extract (CWE) of Lignosus rhinocerotis sclerotim affect the axon length and the survival of axotomized sensory neurons in an in vitro model.

METHODS: Sensory neurons were cultured by dissociation of mouse dorsal root ganglia. The neurons were treated with CWE (25μg/ml) and HWE (25μg/ml) one hour prior to axotomy. The nerve growth factor (NGF), (50ng/ml) as a positive control and phosphate buffered saline (PBS), a negative control were used in our experiments. Axon transections were performed with a laser microdissections system equipped with UV laser unit. Exact points of transection was 150μm distance from soma. Totally 327 neurons were axotomized in the all groups (64 in CWE, 55 in HWE, 51 in NGF, 71 in control). After the microdissection procedure, the preparations were transferred to time-lapse microscopy system. To visualize the death and survival of the neurons, propidium iodide (7.5μM) and calcein AM (1μM) was added to the culture medium. Phase contrast and fluorescence images of cells were captured digitally with a 40X objective with 5 min intervals over the course of 24 h.

RESULTS: Our experiments demonstrated a statistically significant (p<0.01) difference in the axon length following the treatment with CWE (59.68μm) or NGF (68.65μm) compared to the control treatment (27.10μm). However the difference between CWE (59.68μm), HWE (45.78μm) or NGF (68.65μm) were not statistically significant. In addition, we determined the neuron viability following axotomy. A highest number of viable neurons were found in CWE (81.25%) treatment groups that was followed by the NGF (70.59%) and HWE (56.36%) as compared to the control group (29.58%). The differences among the groups were statistically significant and also all treatment groups compared to the control showed a statistically significant higher rate of neuron viability.

CONCLUSIONS: Our study for the first time demonstrated that the cold water extract of Lignosus rhinocerotis sclerotim prevents neuron death after axotomy damage.

OC35
The Effect of Melatonin on the Exosome Release and Content in in vitro Amyloid-beta Toxicity Model
Mehmet Ozansoy1, Muzaffer Beyza Çetin Ozansoy2, Fikrettin Şahin1, Ülkan Kılıç2
1Department of Physiology, Istanbul Medipol University, Istanbul, Turkey
2Department of Medical Biology, Istanbul Medipol University, Istanbul, Turkey

AIM: Alzheimer’s Disease (AD) is the most common and progressive neurodegenerative disorder. The main pathology of AD is the presence of extracellular senile plaques and intracytoplasmic neurofibrillary tangles (NFTs). Senile plaques are comprised of amyloid beta peptide (Aβ), whereas NFTs contain primarily hyperphosphorylated tau. Knowing the increasing involvement of exosomes in the spread of molecular pathology of AD, our aim was to investigate the possible role of melatonin treatment in the releasing of exosomes and exosomal tau content in an in vitro AD model.

METHODS: In this study, SH-SY5Y cell line was used and the optimum concentration of Aβ has been determined colorimetrically by cell viability (Lactate Dehydrogenase Kit) and cell proliferation tests (WST-1 Kit). Melatonin (100μM) was applied before and after Aβ application. After 48 h of Aβ application, cell culture medium was obtained and exosome isolation was performed by Total Exosome Isolation Kit. Isolated exosomes were immunoprecipitated with marker antibodies. The amount of released exosomes and their tau content were analyzed by Western blot technique. Data were statistically evaluated by using ANOVA.

RESULTS: Our results showed that the application of Aβ led to a decrease in exosome release (56.68%, p<0.001), whereas both pre- and post-treatment of melatonin caused an increase (60.2%; p<0.001 and 139%; p<0.001). Pre-treatment of melatonin led to an increase in exosomal total tau (15.22%; p<0.01), but its post-treatment caused a decrease of total tau carried by exosomes (83.66%; p<0.05).

CONCLUSIONS: Melatonin treatment clearly affects the release of exosomes in our in vitro SH-SY5Y cell line model, and the amount of total tau carried by exosomes seems to depend on whether melatonin is applied before or after the Aβ application. The effect of melatonin on exosomes would shed light on the spreading mechanism(s) of neurodegeneration.

OC36
The Effect of Melatonin on the Alzheimer’s Disease: Relationship with FEZ1 Gene Expression
Mehmet Demir1, Ümit Yılmaz2, Süleyman Sandal1, Cemil Çolak2, Yılmaz Çiğremiş3
1İnönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
2İnönü University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Malatya, Turkey
3İnönü University, Faculty of Medicine, Department of Medical Biology and Genetics, Malatya, Turkey

AIM: Alzheimer’s Disease (AD) the most common neurodegenerative disorder, which affects more than 35 million people worldwide. Melatonin may play a role in the neuro-protective mechanism in the AD. The present study was designed to determine the relation
between the Fasciculation and elongation protein zeta-1 (FEZ1) and AD in melatonin deficiency.

METHODS: 30 Male rats weighing 220–280 g were used in the study. The rats were divided into 3 groups: sham pinealectomy (PnX), PnX+streptozotocin (STZ) and melatonin+STZ+PnX groups (n=10). The PnX process was performed to the rats before the STZ applications and the intracerebroventricularly STZ injections were applied to the rats on the 1st and 3rd days as 3 mg/kg. Melatonin applications (intraperitoneally 10 mg/kg/day) were started 1 h before the first dose of STZ administration and continued for 14 days. 14 days after the first STZ application, the behavioral tests were performed for 5 days. In the end of behavioral tests, the rats were sacrificed and their hippocampus tissues were collected. Protein levels of FEZ1 were measured by Western Blot method. RESULTS: While the levels of FEZ1 in STZ+PnX group were similar to sham groups, the levels of FEZ1 in the STZ+PnX+melatonin group were found to be lower than both STZ+PnX and sham groups (p<0.05).

CONCLUSIONS: Exogenous melatonin administration reduced levels of FEZ1 and contributed to the prevention of the development of AD. However, results of the study showed that absence of melatonin did not have any effect on the development of AD. This study was supported by TUBITAK (Project no: 2145410).

OC37
The Effect of Alpha Lipoic Acid on the Hypothalamic-pituitary-adrenal Axis and Cholinergic System in an Experimental Alzheimer's Model

Mehmet Öz1, Enver Ahmet Demir2, Hasan Serdar Gergerlioğlu3
1Department of Physiology, Faculty of Medicine, Bozok University, Yozgat, Turkey
2Department of Physiology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
3Department of Physiology, Faculty of Medicine, Selçuk University, Konya, Turkey

AIM: The aim of this study was to investigate the effect of alpha-lipoic acid (ALA) on the learning and memory performance, cholinergic function, and hypothalamic-pituitary-adrenal (HPA) axis in an experimental sporadic Alzheimer's-type dementia model in rats.

METHODS: The study was conducted with 24 male Wistar rats in 3 groups. The control group received only tap water (p.o.) and physiologic saline (i.p.). In Al group, aluminum chloride (1600 mg/L) was prepared and added to drinking water daily to generate dementia model. In treatment group, ALA (100 mg/kg, i.p.) was administered daily alongside in-drinking-water aluminum. Learning and memory performances were evaluated by Morris’ water maze test 8 weeks later. Rats were sacrificed following the behavioral test. ACTH and CORT were measured from serum for evaluating HPA axis activity whereas hippocampal acetylcholine and acetylcholinesterase activity were estimated for evaluating cholinergic activity by ELISA method. Non-parametric data (platform-latency) were assessed with Kruskal-Wallis post hoc Dunn’s tests whereas parametric data (all other) were analyzed with one-way ANOVA post hoc Tukey’s tests.

RESULTS: No significant difference for body weight was observed between groups (CON: 409.9±23.86; AL: 392.6±24.14; AL+ALA: 389.9±27.12; p=0.3954). The escape latency was prolonged in the Al group compared to the other groups in the last two days of the training trials (p<0.05). In the probe trial, the time elapsed in target quadrant (CON:25.43±6.6; AL: 13.43±5.4; AL+ALA: 23.1±5.2; p<0.05) and the platform crossings (CON:7.12±1.9; AL: 2.87±1.6; AL+ALA: 6.9±3.5; p<0.05) were found to be lower in the Al group. The hippocampal acetylcholine level was decreased; acetylcholinesterase activity was increased in the Al group (CON:1.089±0.38; AL: 1.713±0.32; AL+ALA:1.015±0.52; p<0.05). Serum ACTH (CON: 186.8±40.8; AL: 138.7±31.2; AL+ALA: 191.6±40.5; p<0.05) and CORT levels (CON:163.5±4.6; AL:130.8±30.1; AL+ALA: 181.1±16.3; p<0.05) were found to be lower than others in Al treated ones.

CONCLUSIONS: In-drinking-water aluminum treatment diminishes the learning and memory performance in rats while ALA attenuates this disruption. The beneficial effect of ALA on the learning and memory activity is associated with both the HPA axis and cholinergic transmission.

This study was supported by Selçuk University Research Foundation (BAP project # 15401131).

OC38
Effect of RFRP-3 on Anxiety-like Behaviour and Hippocampal Neurogenesis in Rats

Yasemin Büyükçam1, Zafer Şahin1, Ayşen Koç1, Canan Eroğlu1, İlyş Solak Gormuş2, Ercan Kural2, Selim Kutlu3
1Department of Physiology, Necmettin Erbakan University, Konya, Turkey
2Department of Medical Biology, Necmettin Erbakan University, Konya, Turkey

Aim: RFamide related peptide-3 (RFRP-3) is homolog of gonadotropin inhibitory hormone and plays role in hypothalamic regulation of reproductive functions. RF9 is a RFRP-3 receptor (GPR147) antagonist. There is no evidence regarding the effect of RFRP-3 on hippocampal behavioural processes and neurogenesis. The aim of present study is to investigate possible effects of RFRP-3 and GPR147 signalling on neurogenesis in rat hippocampus and anxiety-like behaviours.

METHODS: 18 Adult male rats were divided four groups as control, RFRP-3 (1nmol/day), RF9 (10nmol/day) and RFRP-3+RF9 in present study. Osmotic brain minipumps were implanted to rats and drug infusions into lateral ventricles were performed for 15 days. Behavioural tests associated with anxiety were applied to rats. Individual anxiety parameters were evaluated. mRNA levels of neurogenesis markers in hippocampus tissues were determined by RT-PCR analysis.

RESULTS: RFRP-3 administration reduced the percent time spent in open arms of elevated plus maze test (p<0.01). RFRP-3 decreased numbers of entries into open arms and increased numbers of entries into closed arms (p<0.05). Significant reduction in time spent in centre of open field test was solely found in RFRP-3 group compared to others (p<0.05). RFRP-3 enhanced time spent in the corner (p<0.05) and diminished rearing behaviour (p<0.01). As for RT-PCR analysis we determined an important reduction on nestin expression in RFRP-3 group compared to control (p<0.05). Expressions of nestin, doublecortin, calbindin and neuron specific nuclear antigen were decreased in RFRP-3 group compared to RF9 administered group (p<0.05). Nestin expression in RFRP-3+RF9 group was decreased compared to control (p<0.05). All of genes in the same group were also decreased compared to RF9 group (p<0.01).

CONCLUSIONS: RFRP-3 showed anxiety-like effect and suppress neuronal progenitor proliferation in adult rat hippocampus. These results suggested that adult hippocampal neurogenesis may play a mediator role for the mechanism of anxiogenic effect of RFRP-3.
Role of Calcium Sensing Receptors on GLP-1 and PYY Secretion After Acute Intraduodenal L-tryptophan Administration in Rats

İpek Acar

Acıbadem University School of Medicine Sophomore, İstanbul, Turkey

Avrupa University, Laboratory Animals Research Center, Ankara, Turkey

Acıbadem University, Faculty of Medicine, Biochemistry Department, Ankara, Turkey

Aim: L-tryptophan, which is an essential amino acid, increases insulin level and decreases food intake. It is thought that L-tryptophan causes release of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) hormones from intestinal enteroendocrine L cells and calcium-sensing receptors (CaSR) play a role in this effect. In this study, we aimed to investigate the effect of acute intraduodenal L-tryptophan administration on GLP-1 and PYY levels and the role of CaSR in this effect in rats.

Methods: Male Wistar rats (n=21) were divided into L-tryptophan, L-tryptophan+CaSR antagonist and L-tryptophan+vehicle groups. All solutions were directly given to the intestines within intraduodenal catheter. Before (min 0) and after (min 30, 60, and 90) intraduodenal infusions, blood samples were taken from tail vein for plasma glucose, L-tryptophan, insulin, GLP-1 and PYY measurements. Blood glucose was measured by test stripes. L-tryptophan level was measured by HPLC and GLP-1, PYY and insulin levels were measured by ELISA kits. Area under the curves (AUCs) were calculated for glucose, insulin, GLP-1 and PYY levels obtained throughout 90 min.

Results: In all groups, plasma L-tryptophan levels were maximum on the 30th min (P<0.05). Plasma insulin and GLP-1 secretions were lower in the antagonist group compared to other groups (P<0.05). PYY levels were not different between groups and time points. Although plasma glucose levels were higher in the antagonist group, there was no significant difference between groups.

Conclusions: This study demonstrates that L-tryptophan causes intestinal GLP-1 release and CaSRs play a role in this effect. As a result, targeting these pathways in L-cells can be used to increase GLP-1 secretion, so it could be possible to develop new treatments to prevent or treat diseases like diabetes and obesity.
CONCLUSIONS: Apelinergic system is widely produced in brain. Apelin may be a central regulator of GI motor functions through API receptor-mediated vagal efferent pathways.

OC42
Central Apelin Inhibits Gastric Motility via API Receptor-mediated Vagal Efferent Pathway
İlkınur Birsen1, Mehmet Bülbül1, Osman Sinen1, Özlem Özsoy1, Gökhan Akköyulu1, Vecihe Nimet İlzık Uysal1
1Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
2Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey

AIM: Apelin is the endogenous ligand of G-protein coupled receptor API. In brain, expression of API mRNA in autonomic centers including hypothalamus, amygdala, nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM) suggests that apelin may be a central regulator of gastrointestinal (GI) motor functions. Gastro-inhibitory effect of central exogenous apelin was reported in rodents indicating that apelin may alter gastric motility through API receptor in brain. The aim of the present study is to investigate whether (1) centrally administered apelin alters gastric motility and (2) apelin exerts its relevant effects through API receptor expressed on stomach-projecting neurons of dorsal motor nucleus of N.vagus (DMV).

METHODS: Seven days prior to the experiments, a 26G guide cannula was stereotaxically implanted into the lateral ventricle of male adult Wistar rats. A neuronal fluorescent retrograde tracer, fast blue was injected into antrum. For recording of gastric postprandial contractions, a strain gage transducer was implanted onto the antral surface in vagotomized or sham animals. After a 7-day recovery, gastric contractions were monitored in conscious state using a Wheatstone bridge bioamplifier and a digital data acquisition system for 3-4 hours. The changes in motility index were evaluated before and after apelin administrations. After euthanization, brainstems were removed and fixed in 10% formalin solution. API and c-Fos co-expressions on gastro-projecting vagal efferent cells in DMV were monitored using immunofluorescence method on 50 µm coronal brainstem sections.

RESULTS: Antral contractions were inhibited following central administration of apelin which was abolished by truncal vagotomy. The gastro-projecting neurons of DMV were marked by fluorescent fast blue. In apelin-treated rats, c-Fos expression on API-positive DMV cells was more remarkable compared with vehicle-injected rats.

CONCLUSIONS: Apelinergic system is widely produced in brain. Apelin may be a central regulator of GI motor functions through API receptor-mediated vagal efferent pathways.
Effect of Metformin on the Myometrium

Pelin Ozdemir, Meltem Tuncer, Bilge Pehlivanoglu, Hilal Korkmaz, Z. Dicle Balkanci
Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey

AIM: Myometrium; smooth muscle of uterus, ready to labor during pregnancy and it is very active during labor, also it is functional in non-pregnant women. Therefore, it is important to understand contraction and relaxation mechanisms of myometrium. Metformin is a biguanide derivative oral antidiabetic drug, which is the first choice in the treatment of type II Diabetes Mellitus patients especially if they are obese. In recent years, metformin extensively studied due to its smooth muscle relaxant, antioxidative and antineoplastic activities. Also, metformin acts as an adenosine monophosphate activated protein kinase (AMPK) and nitric oxide synthase (NOS) activator. It has been shown that by using NO metformin causes vasodilation. Its effect on the genital system is also studied due to its smooth muscle relaxant, antioxidative and antineoplastic activities. Since, it is clinically important to understand these effects on myometrium contractility we conducted present study. Firstly; we aim to investigate effect of metformin on spontaneous and evoked myometrial contractions. Secondly; we aim to investigate role of AMPK and NO pathway on presumed response to metformin.

METHODS-RESULTS: Myometrial strips are obtained from adult female rats and our results has shown that metformin decreases frequency of spontaneous contractions and amplitude of KCl and KCl+oxytocin induced contractions (P<0.05). Dorsomorphin (AMPK inhibitor) attenuates effect of metformin on the spontaneous contractions but could not alter any other parameter. L-NAME (NOS inhibitor) decreases frequency of spontaneous contractions, amplitude; area under the curve of KCl and oxytocin induced contractions, amplitude of KCl+oxytocin induced contractions (P<0.05). CONCLUSIONS: In conclusion; our findings suggest that metformin may have a relaxant effect on the myometrium and this effect could be mediated via AMPK pathway.

The Effects of Urotensin II Agonist and Antagonist on the Testicular Damage of Streptozotocin-induced Diabetic Rats

Emir Sengül, Volkan Gelen, Fikret Celebi, Ali Çınar, Hasan Tarık Atmaca
1Department of Physiology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
2Department of Physiology, Faculty of Veterinary, Kafkas University, Kars, Turkey
3Department of Pathology, Faculty of Veterinary, Kırıkkale University, Kırıkkale, Turkey

AIM: Diabetes mellitus (DM) is one of the most common chronic diseases. Besides, DM causes testicular damage, decrease in sperm count and abnormal spermatogenesis as well as many systems damages. Urotensin-II and Urotensin-II receptors are widely available in testis tissue. The aim of this study is to investigate the therapeutic effects of UTR agonist and antagonist treatment on streptozotocin (STZ) induced diabetes in testicular tissue.

METHODS: In our study, 50 Sprague Dawley male rats were divided into 5 groups (control, DM, DM+Ag, DM+Anta, DM+Ag+Anta). All rats except for the control group were induced diabetes by administration of 60mg/kg STZ intraperitoneally (IP) and the control and DM groups after proof of diabetes 0.09% NaCl solution ip daily for 6 weeks. Human Urotensin II (10 nmol/kg: ip) was given to DM+Ag group for 6 weeks. Urotide (0.6 mg/kg; ip) was given to DM+Ag-Anta group for 6 weeks. Human Urotensin II (10 nmol/kg; ip) and Urotide (0.6-mg/kg; ip) were given to DM+Ag+Anta group for 6 weeks. At the 6-weeks later, all rats were euthanized under anesthesia (ketamine/xylazine, 50mg/kg). The collected testis tissues from rats were used for analysis of gene expressions and histopathology. The gene expression analysis results were evaluated by ANOVA, Tukey test. P<0.05 was considered significant.

RESULTS: mRNA expression level of Cox-2, Tnf-α and Urotensin II receptor (UTR), the antagonist administration significantly decreased (P<0.05) and significantly increased DM groups (P<0.05), while agonist administration did not (P>0.05). In addition, expression level of these gene decreased with the treatment of agonist and antagonist doses in DM+Ag+Anta groups (P<0.05). The testicular parenchyma was observed as normal structure with in control group animals, but severe intertubular edemas were observed in DM group. However, the edema and disorganization of seminiferous tubules were decreased in DM+Ag and DM+Ag+Anta groups. CONCLUSIONS: This study revealed that administration of the Urotensin-II antagonist decreased the DM-mediated testicular damages.

Nesfatin-1 may Interfere with Kisspeptin/kiss1 System in Gonadal Activity of Female Rats

Zafer Şahin, Gökhan Çuce, Mete Özcan, Sinan Canpolat, Zülfikare Işık Solak Görmüş, Selim Kutlu, Haluk Keleştimur, Meltem Tuncer, Bilge Pehlivanoğlu, Hilal Korkmaz, Hasan Tarık Atmaca
1Department of Physiology, Faculty of Veterinary, Atatürk University, Kırıkkale, Turkey
2Department of Physiology, Faculty of Veterinary, Kafkas University, Erzurum, Turkey
3Firat University, Faculty of Medicine, Department of Biophysics, Elazığ, Turkey
4Firat University, Faculty of Medicine, Department of Physiology, Elazığ, Turkey
5Firat University, Faculty of Health Sciences, Konya, Turkey

AIM: Diabetic mellitus (DM) is one of the most common chronic diseases. Besides, DM causes testicular damage, decrease in sperm count and abnormal spermatogenesis as well as many systems damages. Beside, DM cause testicular damage, decrease in sperm count and abnormal spermatogenesis as well as many systems damages. Nesfatin-1 may Interfere with Kisspeptin/kiss1 System in Gonadal Activity of Female Rats.

METHODS: Female Sprague-Dawley rats were weaned on post-natal day (pnd) 21. The animals were intracerebroventriculally cannulaed under general anesthesia on pnd 23. Groups of female rats were daily administrated with nesfatin-1 (25 pmol/rat), p234 (1 nmol/rat), and nesfatin-1 plus p234. Blood samples and ovarian tissue were obtained from all animals after pnd 60th day in diestrus, which was determined by vaginal smear:ations of LH levels compared to controls (P<0.001, 7.23±0.33ng/ml and 4.31±0.34ng/ml, respectively). Administration of nesfatin-1 plus P234 (4.82±0.31ng/ml) significantly decreased LH levels compared to nesfatin-1 group (P<0.001). FSH levels did not differ among groups. Although the counts of small, medium, antral follicules and corpus luteum did not differ between nesfatin-1 and control groups, their counts significantly decreased in nesfatin-1 plus P234 group compared to the nesfatin-1 administered group. tin/kiss1 system in the female rats.
PC001
Bradycardia in Hypothyroidism is Caused by Intrinsic Remodeling of the Sinus Node
Sunil Jit R. Logantha1, Dilek Ozbyey2, Joseph Yanni3, Alicia D’Souza1, Halina Dobrzynski1, Ozgur Kasmay Cakir2, Mark R. Boyett1
1Institute of Cardiovascular Sciences, University of Manchester, UK
2Marmara University School of Medicine, Departments of Physiology, Istanbul, Turkey
3Department of Histology and Embriology, Faculty of Medicine, Akdeniz University, Antalya, Turkey

AIM: To investigate the characterise the hypothyroid (HT) sinus node and identified the important mechanisms responsible for the bradycardia.

METHODS: Rats (n=18) were made HT with 6-n-propyl-2-thiouracil (10 mg/kg/day for 15 days). Control cohort (n=20) received vehicle. ECGs were recorded in anesthetised animals and after complete autonomic block with propranolol (2 mg/kg) and atropine (1 mg/kg). Hearts extracted and Langendorff perfused and intrinsic heart rate measured. In sinus node, atrial and ventricular voltage channel components mRNA abundance was measured using qPCR. Data are presented as means±SEM and one-way ANOVA was used for statistical comparison.

RESULTS: After complete autonomic block the intrinsic heart rate recorded in vivo was 223±9 bpm in HT and 404±19 bpm in control animals. In vitro, the intrinsic rate measured in HT and control hearts was 186±7 and 238±7 bpm (P<0.01), respectively. In the HT sinus node, transcripts proportion for key voltage-clock components were significantly downregulated: funnchy channel (Cav.4 down by 79%, P<0.05), L-type Ca2+ channel (Cav.1.2 down by 66%, P<0.05) and T-type Ca2+ channel (Cav.3.1 down by 77%, P<0.05). Similar downregulation was observed in Cav2.1-clock components: sarcoplasmic reticulum Ca2+ ATPase (SERCA2a, down by 90%, P<0.01) and ryanodine receptor (RyR2, down by 77%, P<0.05). The plasma membrane Ca2+ ATPase (PMCA1) responsible for Ca2+ extrusion out of the cell was downregulated by 85% (P<0.05) in the HT sinus node. Consistent with these findings, we identified potential thyroid hormone response elements in the 10 kb promoter region of HCN4 using in-silico analysis. CONCLUSIONS: In the HT sinus node, downregulation of HCN4, Cav1.2 and Cav3.1 coupled with significant loss of SERCA2a and RyR2 is likely to compromise the voltage- and Ca2+ -clock pacemaker mechanisms. Thus, ion channel remodelling intrinsic to the sinus node is the likely cause of bradycardia in hypothyroidism.

PC002
The Effect of Apelin on the Expression of Atrial Natriuretic Peptide in Cardiac Tissue
Vecihe Nimet İğit Uysal1, Nuray Acar2, İlkın Birsen1, Filiz Özcan3, Özlem Özbey2, Hakan Soylu2, Sema Avci1, Filiz Tepeköy3, Gökhan Akkoyunlu1, Gültakin Yücel4, İsmail Üstüne4
1Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
2Institute of Cardiovascular Sciences, University of Manchester, UK
3Department of Histology and Embriology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
4Department of Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey

AIM: Stress is an important etiologic factor in cardiovascular diseases. It has been shown that stressors lead to the increased expressions of apelin and atrial natriuretic peptide (ANP) in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in cardiac tissue.

METHODS: A total of 24 adult male Wistar albino rats were used in this study. The rats were divided into control (n=8), stress (n=8) and F13A+stress (n=8) groups. In the stress group, the conscious rats were restrained individually in rectangular polypropylene cages (28x8x8 cm) and immersed up to the depth of the xyphoid process in a 23oC water to induce stress for 6 hours. In the F13A+stress group, apelin receptor antagonist F13A was injected intravenously immediately before application of water immersion and restraint stress. The plasma corticosterone levels using enzyme immunoassay kit and the plasma ANP levels using enzyme-linked immunosorbent assay kit were measured. The samples obtained from atria were used for immunohistochemistry and western blot analysis. Kruskal-Wallis and Mann-Whitney U tests were used for statistical analysis.

RESULTS: Stress application increased the expression of apelin, HIF-1α and ANP in atrial cardiomyocytes. F13A prevented the stress-induced increase of HIF-1α and ANP expression in cardiac tissue. CONCLUSION: The increased expression of apelin under stress conditions to be effective in ANP production, which is demonstrated by the use of apelin receptor antagonist F13A and apelin may play a role in cardiovascular homeostasis by increasing ANP expression.
RESULTS: Streptozotocin-treated rats' blood glucose measurement during 8 weeks was significantly increased compared to normal healthy rats (12.5 ± 2.8 mg/dL; 398.0 ± 2.5 mg/dL, respectively; p < 0.001). Lithium application, while increasing cell proliferation in normal healthy rats (p = 0.003, p = 0.001 respectively), ERK gene/protein expression was similar in all groups. miR21 was up-regulated 2.10 fold in GH group when compared with SC group (p = 0.010). miR133 expression was shown to increase in GH, SE and SE-GH (2.61, 2.30, 1.44 fold change, respectively) groups when compared with SC group.

CONCLUSIONS: Growth hormone and swimming exercise appear to affect PI3K/AKT/mTOR signalling pathway in the left ventricular tissue in rats. Furthermore, r-hGH administration resulted in increased miR21 gene expression. This study was supported by Trakya University Scientific Research Projects Unit (TUBAP-2015-36).

PC004 Lithium’s Effect on Streptozotocin-induced Experimental Diabetes Rats of Vascular Smooth Muscle Cell Proliferation Zehra Çiçek, Zehra Gül Koçaklı, Kübra Akkılıoğlu, Ayşe Doğan Çukurova University, Medicine Faculty, Medical Physiology Department, Adana, Turkey

AIM: Lithium which is used to treat bipolar disorders, is also reported to have detactive effect on abnormal vascular smooth muscle cell proliferation in addition to its neuroprotective effects. It is known that, vascular smooth muscle cell proliferation is increased in diabetes mellitus. Therefore, in this study on experimental diabetes model (STZ-DM) induced by streptozotocin, we aim to investigate that lithium’s effect on vascular smooth muscle cell proliferation.

METHODS: In our study, Wistar male rats weighing 180-200 g were used for animal experiments. Streptozotocin (45 mg/kg) was intravenously administered into the tail vein to generate the STZ-DM group. Streptozotocin-treated rats were followed up for blood glucose levels for 8 weeks. Primary culture cells were obtained from aortic smooth muscle tissue of normal healthy and STZ-DM rats. The number of cells per milliliter was determined manually counting the cells obtained on thoma counting chamber. The cultivation was homogeneously made into ninety-six culture vessels in equal numbers. After twenty four hours incubation, the cells were treated with 10 µM, 100 µM and 1000 µM nicotine. At the end of 24 h of incubation period, cell proliferation and viability were assessed spectrophotometrically by 3-[4,5-dimethyldiazole-2-y]-2,5-diphenyltetrazolium bromide (MTT). ERK gene/protein expression were determined by micro spectrofluorimetric method. The cells were plated on 24 mm diameter coverslips before measurement and treated for 1 h with the calcium indicator Fura-2 AM. The 10 µM, 100 µM nicotine and solution of high concentration KCl was acutely applied to the cells during measurement. All data were analyzed with SPSS using paired t-test and ANOVA methods.

RESULTS: The 10 µM nicotine concentration did not change cell proliferation. The 100 µM and 1000 µM concentration of nicotine raised cell proliferation significantly (p < 0.05). In addition, 10 µM and 100 µM nicotine administration significantly increased intracellular calcium levels when compared to the controls (p < 0.001).

CONCLUSIONS: It may be suggested that administration of nicotine results in increased healthy VSMC proliferation and is associated with increased intracellular calcium.

PC005 Effect of Nicotine on The Smooth Muscle Cell Proliferation and Intracellular Calcium Levels Zehra Gül Koçaklı, Zehra Çiçek, Kübra Akkılıoğlu, Halil Şener, Osman Sağlam, Ayşe Doğan Çukurova University, Medicine Faculty, Medical Physiology Department, Adana, Turkey

AIM: Studies reported that nicotine both increase and reduce the proliferation of vascular smooth muscle cells (VSMC) through the nicotinic acetylcholine receptors. It is suggested that intracellular calcium concentrations increase the effect of stimulants for proliferation. Therefore, in our study, we aimed to investigate the effects of nicotine on vascular smooth muscle cell proliferation and free cytoplasmic calcium level.

METHODS: Wistar male rats weighing 180-200 g were used for animal experiments. Primary culture cells were obtained from aortic smooth tissue of rats. The number of cells per milliliter was determined by manually counting the cells obtained on the thoma counting chamber. The cultivation was homogeneously made into ninety-six culture vessels in equal numbers. After twenty four hours incubation, the cells were treated with 10 µM, 100 µM and 1000 µM nicotine. At the end of 24 h of incubation period, cell proliferation and viability were assessed spectrophotometrically by 3-[4,5-dimethyldiazole-2-y]-2,5-diphenyltetrazolium bromide. Intracellular calcium levels were measured by micro spectrofluorimetric method. The cells were plated on 24 mm diameter coverslips before measurement and treated for 1 h with the calcium indicator Fura-2 AM. The 10 µM, 100 µM nicotine and solution of high concentration KCl was acutely applied to the cells during measurement. All data were analyzed with SPSS using paired t-test and ANOVA methods.

RESULTS: The 10 µM nicotine concentration did not change cell proliferation. The 100 µM and 1000 µM concentration of nicotine raised cell proliferation significantly (p < 0.05). In addition, 10 µM and 100 µM nicotine administration significantly increased intracellular calcium when compared to the controls (p < 0.001).

CONCLUSIONS: It may be suggested that administration of nicotine results in increased healthy VSMC proliferation and is associated with increased intracellular calcium.

PC006 Effects of L-NAME, DEXA and L-NAME+DEXA on Systemic Blood Pressure of Spontaneous Hypertensive Pregnant and Non-Pregnant Wistar Albino Rats Gülşüm Bacak1, Muhammet Balkaya2
1Ege University Training and Research Hospital, Obstetrics and Gynecology Department, Izmir, Turkey
2Adnan Menderes University, Faculty of Veterinary Medicine, Department of Physiology, Aydın, Turkey

AIM: Chronic L-NAME does not always cause a sustainable NO-inhibition, but addition of dexamethasone (DEXA) strengthens its effect, and in hypertensive subjects, endothelium-derived relaxed substances-NO-releasing response to stimuli is decreased. This study aimed to determine effects of L-NAME, DEXA and L-NAME+DEXA on systemic blood pressure of spontaneous hypertensive Wistar albino rats.
METHODS: Approximately 3-months old 62 rats were used in two simultaneous experiments. Sperm positive (n=33) and negative (n=29) animals were each divided randomly into 4 groups. Blood pressures were recorded at 15-day of pregnancy/experiment by non-invasive method, then animals were given physiologic saline (Control), L-NAME (150mg/kg/day), DEXA (100µg/kgBW/day) or L-NAME+DEXA (150mg and 100µg per kg BW/day) for consequent 5 days. At 19 day of pregnancy, blood pressures were measured again before applications. 24-h urines were collected in individual metabolic cages. Body weights, 24-h urine, urinary proteins, blood glucose and weights of some organs and fetuses were determined. Data were analyzed by ANOVA and ANOVA for repeated measures.

RESULTS: Compared to L-NAME, DEXA and L-NAME+DEXA caused remarkable decreases in body weights of animals (P=0.021 and P=0.012, respectively). In non-pregnant animals, only the weights of DEXA-given animals was significantly reduced when compared with controls (P=0.042). Systolic and diastolic blood pressures of the population varied between 145-170mmHg vs 118-135mmHg, respectively. Interventions influenced only the diastolic blood pressure of pregnant animals (P=0.043). The difference between DEXA and L-NAME+DEXA was significant (P=0.044). Other variables were not affected by interventions in both experiments.

CONCLUSIONS: Animals used in this study showed resistance against both L-NAME and DEXA in regarding hypertension.

PC007 Effects of Phenoxybenzamine after Hypothermic and Normothermic Ischemia Injury in Rat Aorta
İşık Solak Görmüş1, Ravyie Özen Koca1, Hatice Solak1, Zafer Şahin1, Adnan Karamahmûr2, Niyazi Görmüş1, Selim Kutlu1
1Department of Physiology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
2Department of Medical Training and Informatics, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
3Department of Cardiovascular Surgery, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey

Aim: Paraplegia can develop due to spinal cord ischemia during thoracoabdominal aortic surgery. In this study, effects of phenoxybenzamine on spinal cord blood flow were investigated by dilatation of aorta after in vitro rat aorta ischemia.

METHODS: In this study we used 48 Wistar albino rats in 4 groups (n=12): Control- phenoxybenzamine group, ischemic normothermia-hypothermia group, ischemic normothermia-hypothermia phenoxybenzamine (treatment) group, after phenoxybenzamine ischemic normothermia-hypothermia (prophylaxis) group. Organ bath temperature was reduced to 32°C, H2O2 10⁻⁸-10⁻⁴M was cumulatively administered in 20 min and ischemia was made in Group 2-3-4. After 10 min following last dose, temperature was raised to 37°C again and phenylephrine (PE 10⁻⁶M) was applied. Phenoxybenzamine (10mg/ml) 10⁻⁶-10⁻⁴M was given cumulatively in Group 1-3. 10 min after phenoxybenzamine's last dose PE (10⁻⁴M) was administered. Phenoxybenzamine (10⁻⁴M) was given after spontaneous contractions in Group 4. PE was administered 10 min later and contractions were recorded. When contractions were stable, temperature was reduced to 32°C within 20 min, H2O2 was added cumulatively and ischemia was made. Then temperature was raised to 37°C, second dose PE (10⁻⁴M) was given.

RESULTS: After phenoxybenzamine, first PE contractions were inhibited increasingly in Group 1. After ischemic hypotermia, H2O2 (10⁻⁸,10⁻⁴,10⁻¹⁰M) revealed significant inhibition of spontaneous contraction in Group 2 (p<0.05). Inhibition of first PE contractions continued after ischemia hypotermia with phenoxybenzamine. There was no significant contractions according to last PE dose in Group 3. After phenoxybenzamine application, we found significant contractions both in the first PE and second PE doses following ischemic hypothermia in Group 4 (p<0.05).

CONCLUSIONS: Increasing blood flow mediated hypothermia and phenoxybenzamine vasodilation may prevent ischemia injury in rat aorta. Therefore, this method can be considered as an alternative treatment for the prevention of spinal cord ischemia during thoracoabdominal aortic surgery.

PC008 The Effects of Increasing Load During Exercise on Heart Rate Recovery and the Position Change Maneuver During Rest on QT Dispersion
Elif Yaman1, Ümit Şener2, Şeref Alpsoy3, Pınar Çelebioğlu1, Hasan Erdoğan1
1Department of Cardiovascular Physiology, Institute of Health Sciences, Namik Kemal University, Tekirdag, Turkey
2Department of Physiology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
3Department of Cardiology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey

Aim: Heart Rate Recovery (HRR) is procured by deducting the heart rates at 1st, 2nd, and 3rd min of recovery from the heart rate at maximal exercise. Subnormal values of HRR is found correlated to diseases like myocardial infarction and diabetes mellitus. The difference between the longest QT interval and the shortest QT interval on ECG is called QT dispersion. QT dispersion is the indicator of ventricular arrhythmia of heart. It is shown that the QT dispersion is correlated to increased cardiovascular morbidity and mortality in ischemic heart disease, dilated and hypertrophic cardiomyopathy, and hypertension. Our study aims to research into the effects of gradually increased load on HRR time and how movements depending on position affect the QT dispersion in healthy individuals.

METHODS: In our study, healthy male individuals (n=20, 19.9±2.1 years old, 75.1±9 kg) were practiced on treadmill a)free effort, b)10 and c)20kg loaded effort tests at different times, and by deducting the 1st, 2nd, 3rd minutes from maximum reached heart rates of each; indexes of HRR were found. How movements depending on position affects ((a)lying right, (b)lying left, (c)lying back, (d)sitting, (e)upright positions) the QT dispersion of healthy individuals was calculated based on Bazett’s formula by measuring the QT intervals of ECG recordings. Tukey test was used as the statically method.

RESULTS: Practicing effort tests by gradually increasing loads in healthy adult individuals showed that the rate of load did not change the HRR (1st min. HRR; a=25.59±7.60, b=25.72±6.15, c=25.09±10.19 beats/min.). Since the research findings of movements depending on position of healthy adult individuals did not cause any significant difference on QT dispersion (a=39.91±4.60, b=41.70±5.19, c=41.17±4.92, d=40.35±4.44, e=42.70±4.20). At the same time, there is no difference seen at the P dispersions that are the indicator of atrial arrhythmia.
PC009
Probing the Mediation of Central Cyclooxygenase and Lipoxygenase Pathways in Cardiovascular Responses Following Central Injection of Orexin A
Gökçen Güvenç, Leman Gizem İlhan, Burçin Altınbaş, Begüm Aydın, Nasir Niaz, Murat Yalçın
Department of Physiology, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey

AIM: Central administration of Orexin A (OA), a neuropeptide in hypothalamus, is known to induce pressor response not only through its self-receptors, but also through central histaminergic and cholinergic systems. Experiment performed in our laboratory demonstrated that arachidonic acid and its metabolites induced cardiovascular responses which were identical to those generated by OA. Based on this comparability, the fundamental purpose of the experiment was to demonstrate the mediation of central cyclooxygenase (COX) reaction products like prostaglandin (PG) E, D and F2a lipoxygenase (LOX) pathways in OA-induced cardiovascular responses.

METHODS: 85 Male Sprague-Dawley rats were used in the experiment. Initially, the cardiovascular responses were investigated by administering different doses of OA given intracerebroventricu larly. Then, to demonstrate the mediation of COX, PGE, PGD, PGF2a and LOX pathways in OA-induced cardiovascular responses, pretreatments with non-selective COX inhibitor ibuprofen, PGE and PGD receptorantagonist AH6809, PGF2a receptor antagonist PGF2a dimethylamine (PGF2aDMA) and non-selective LOX inhibitor NDGA were performed on separate groups and cardiovascular parameters were recorded up to 60 min following OA administration. The data obtained from 5 animals were provided as average ±standard error. To perform statistical evaluation, posthoc Benforoni test of RM-ANOVA was employed. p<0.05 was considered to be statistically significant. Groups were as follows (n=5/group): 0.9% Saline; Orexin (0.75, 1.5, 3nmol); 30% DMSO; Saline+ Orexin; Saline+ Orexin; DMSO+ Orexin; Ibuprofen+ Saline; Ibuprofen+ Orexin; NDGA+ Saline; NDGA+ Orexin; AH6809+ Saline; AH6809+ Orexin; PGF2aDMA+ Saline; PGF2aDMA+ Orexin.

RESULTS: Centrally injected OA elicited a rise in blood pressure and heart rate. Pretreatment with ibuprofen blocked OA-induced cardiovascular responses while, AH6809, PGF2aDMA and NDGA pretreatments inhibited OA-induced cardiovascular responses partially. CONCLUSIONS: The present findings show pressor and tachycardiac cardiovascular responses of OA and complete mediation of COX pathway and partial mediation of PGE, PGD, PGF2a and LOX pathways in these responses. This study was supported by TÜBİTAK (214O728) grant.

PC010
Atherogenic Indices and Lipid Profile in Acute Ischemic Stroke Patients
Ali Ziya Karakılıç, Gül Şahika Gökdemir, Hakim Çelik
1Department of Physiology, Medical Faculty, Harran University, Sanlıurfa, Turkey
2Mehmet Akif İnan Research Hospital, Şanlıurfa, Turkey
3Departments of Emergency Medicine, Faculty of Medicine, Harran University, Şanlıurfa, Turkey

AIM: Stroke is one of the important cerebrovascular diseases lead to morbidity and mortality. Free radicals produced in ischemic stroke may affect lipid and lipoproteins via oxidative damage, and lead to deterioration of cerebral blood flow. Increasing of plasma low-density lipoprotein cholesterol is an important risk for cardiovascular system. Recent studies suggest that atherogenic indices are also associated with vascular damages. The study was carried out to investigate the values of atherogenic indices and lipid profile in patients with acute ischemic stroke.

METHODS: This study were performed on 51 acute ischemic stroke patients and 49 healthy controls. Mean age of the patients was 68.37±12.72 and of controls was 65.04±10.79 years. The values of systolic and diastolic blood pressure, and lipid profile such as trigliceride (TG), total cholesterol (CHOL), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), and rates of the TG/HDL-C and TCHOL/HDL-C were determined in all samples. Data were analysed by SPSSsoftware program.

RESULTS: The values TG (p=0.049), CHOL (p=0.023), LDL (p=0.050), atherogenic indices such as TG/HDL-C (p=0.004) ve TCHOL/HDL-C (p=0.004) were increased in patient with acute ischemic stroke, but HDL (p=0.042) levels was significantly decreased in these patients. On the other hand, there were not differences (p>0.05) between the values of the blood pressure in patients and control groups.

CONCLUSIONS: The levels of HDL were significantly decreased while the values of CHOL, LDL, TG, TG/HDL-C and TCHOL/HDL-C were increased in the patients with acute ischemic stroke. Based upon these results, the decreasing of HDL and the increasing of CHOL, LDL, TG, and atherogenic indices (TG/HDL-C and TCHOL/HDL-C) may be important risk factors for atherothrombotic cerebrovascular diseases such as ischemic stroke. However, further studies are necessary in order to evaluate the atherogenic index in ischemic stroke patients.

PC011
Investigation of the Effect of Nifedipine on Heart Glutathione Reductase Enzyme of Ischemia/Reperfusion Injured Rat
Erser Eraslan, Deniz Ekinci, Ayhan Tanyeli, Murat Şentürk
1Department of Physiology, Faculty of Medicine, Atatürk University, Turkey
2Ondokuz Mayıs University, Department of Agricultural Biotechnology, Samsun, Turkey
3Department of Biochemistry, Faculty of Medicine, Agri Ibrahim Cecen University Agri, Turkey

AIM: The purpose of this study was to investigate the effect of nifedipine drug on rat heart tissue glutathione reductase (GR) enzyme in ischemia/reperfusion (I/R) and I/R injured rats.
RESULTS: In the histological examination, disorganization of cardiomyocytes. The histological changes and caspase-3 immunoreactivity were graded according to the extent of the lesion from 0 to 3.

CONCLUSION: As a result, the activity of the GR enzyme was determined to be mostly inhibited in nifedipine + I/R group among all applications.

PCOS group. Moreover eosinophilic cells with pyknotic and heterochromatic nucleus among normal myocardial fibers were also observed. Although administration of Exe-4 restored the myocardial structures, the lesions did not completely alleviated. There was no statistically significant difference between PCOS group and PCOS+Exe-4 in terms of histological alterations (p>0.05). Immunohistochemical analysis showed that PCOS significantly (p<0.005) increased the expression of caspase-3 protein expression in the myocardium when compared to control group. By the treatment of Exe-4, the expression of caspase-3 protein didn’t change statistically when Exe-4 group was compared with PCOS group (p>0.05), treatment partially ameliorated PCOS induced myocardial damage.

PC012 Effect of Salusin-α and Salusin-β on Heart Damage Following the Renal Ischemia/Reperfusion
Murat Çakır1, Aslı Taşlıdere2, Halil Düzova2, Güler Orhan2
1Department of Physiology, İnönü University Faculty of Medicine, Malatya, Turkey.
2Department of Histology and Embryology, İnönü University Faculty of Medicine, Malatya, Turkey.

AIM: The ischemia-reperfusion (I/R) damage is known as the damage as a result of the re-oxygenation of the hypoxic organ. Together with the local tissue damage, it may cause the damage of the organ at distant. Acute kidney injury (AKI) is associated with high mortality resulting from extra-renal organ damage, particularly the heart. In this study, we investigated whether salusin-α and salusin-β which have been found in the kidney, heart tissue and demonstrated to have protective against cardiac I/R damage features have protective effect of salusin-α and salusin-β against remote cardiac damage induced by renal I/R.

METHODS: Sprague-Dawley rats were divided into six groups (control group and 5 I/R groups (1 h ischemia followed by 23 h reperfusion). The treatment groups were subcutaneously administered 1 and 10 μg/kg salusin-α and, 1 and 10 μg/kg salusin-β at the beginning of ischemia. At the end of the study, heart tissue samples were taken from rats. The heart samples were processed by routine tissue techniques and embedded in paraffin. 4 μm thick sections of tissues were cut, mounted on slides, stained with Hematoxylin-Eosin (H-E) and examined under a Leica DFC280 light microscope by Leica Qwin and Image Analysis System.

RESULTS: In control group, heart tissue showed normal histological appearance. In I/R group, we detected some histological changes. These histopathological changes are eosinophilic cytoplasm and pyknotic nuclei cells, mononuclear cell infiltration, intracytoplasmic vacuolisation, vascular congestion, necrosis and hemorrhage. These histological changes significantly decreased in I/R+salusin-α 1 μg/kg, I/R+salusin-α 10 μg/kg, I/R+salusin-β 1 μg/kg, I/R+salusin-β 10 μg/kg groups, especially salusin-β groups.

CONCLUSION: It is concluded that salusin-α and salusin-β exerted protective effects on renal IR-induced heart injury as a remote organ.
PC014
Protective Effect of Alpha-Lipoic Acid on Methotrexate-induced Cardiac Injury
Azibe Yıldız1, Kevser Tanbek1, Elf Özerol1, Nigar Vardi1
1İnönü University, Medical School, Department of Histology and Embryology, Malatya, Turkey
Aim: Methotrexate (MTX) is used as a cytotoxic agent in the treatment of a variety of malignancies and autoimmune diseases. Unfortunately, the curative potential of MTX is accompanied by multi-organ toxicity. However, the mechanisms of MTX-induced toxicity have not been completely determined. Alpha-lipoic acid (ALA) is a powerful antioxidant that protects tissues against oxidative damage and inflammation. This study was designed to investigate protective effect of ALA on cardiac damage induced by MTX.

METHODS: In this study, Wistar albino female rats, aged 10-12 weeks and weighing 200-300 g were divided into 4 groups; control, ALA, MTX, MTX+ALA. ALA (50mg/kg) was performed intraperitoneally daily during the experimental period (24 days). MTX (20mg/kg) was given intraperitoneally as a single dose on day 21. At the end of the experiment, myocardial tissue was evaluated for histological changes and in terms of caspase-3 immunoreactivity. MDA levels were also measured.

RESULTS: Control group showed a normal histological appearance. In MTX group, we observed intensive eosinophilic cytoplasm-pyknotic nuclei with cardiomyocytes and disorganization of cardiomyocytes. The damage score in the MTX group was statistically higher than control group (P<0.05). Although, the myocardial injury was markedly reduced in MTX+ALA group, histological alterations were still present in some areas. In the immunohistochemical evaluation, the control group showed slight expression of caspase-3. On the other hand, caspase-3 expression was significantly increased in MTX group in comparison to control group (P<0.05). AlA administration significantly reduced the expression of caspase-3 (P<0.05). Malondialdehyde (MDA) was found to be increased in MTX group compared to the control group. However, this increase was not statistically significant. ALA administration did not affect MDA level.

CONCLUSIONS: While giving ALA decreases the cardiac tissue damage histologically caused by MTX, it didn’t change oxidative stress. Findings of the study give rise to the thought that protective effects of ALA on myocardial tissue take place over a different mechanism rather than antioxidant mechanism.

PC016
The Effect of Long Term and Acute Administration of Genistein on Ischemia-reperfusion-induced Arrhythmia
Didem Eksioglu1, Firdevs Erim1, Ömer Bozdoğan1, Oğulcan Talat Özarslan1, Hayriye Soytürk Orallar1, Salih Tunç Kaya2, Selçuk Yaşar2
1Abant Izzet Baysal University, Biology Department, Bolu, Turkey
2Düzce University, Biology Department, Düzce, Turkey
Aim: Genistein is a phytoestrogen that has been used to decrease symptoms of menopause in estrogen replacement therapy in women. The resistance against the cardiovascular disease and the sudden death due to coronary artery occlusion increases in women after menopause. In this study, we investigated effects of genistein on the ischemia-reperfusion-induced arrhythmia in rats.

METHODS: 64 Female, 12 male rats (6-7 months old) were used in this study. In one group, genistein were intraperitoneally given in 100ug/kg dose daily for 4 weeks. In another group, 1mg/kg dose genistein were given intravenously just before reperfusion. Six minof myocardial ischemia was produced by ligation of left coronary artery. Type and duration of arrhythmia and blood pressure were analysed by using one way ANOVA. All operations on the animals were approved by the Abant Izzet Baysal University Animal Research Ethical Committee (protocol number: 2012/49, 2014/30).

RESULTS: Reperfusion-induced arrhythmias decreased in overiectomised group that the genistein was administered just before reperfusion in respect to sham and overiectomised groups (P<0,05). Long
term genistein administration was not effective on the ischemia or reperfusion induced arrhythmia. The blood pressure and heart rate did not significantly change when genistein administered in the long term or just before reperfusion.

CONCLUSIONS: Lesser ventricular arrhythmia observed during reperfusion in overectomised rats that genistein administered just before reperfusion in respect to sham or only overectomised animals shows that this effect might be depend on preconditioning of early surgical operation but not on genistein. This study was supported by Abant Izzet Baysal University Research Fund.

Inhibition of AMPK by Doxorubicin Exacerbates Cardiomyocytes Death: Role of TLR4
Celal Güven1, Eylem Taşkın Güven1, Melda Sarman2, Zeliha Emrence3, Sema Sırma Ekmekçi3, Neslihan Abacı3, Handan Akçakaya3
1Department of Biophysics, Faculty of Medicine, University of Adıyaman, Adıyaman, Turkey
2Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Bilim University, Istanbul, Turkey
3Department of Genetics, Institute of Experimental Medicine, University of Istanbul, Istanbul, Turkey
4Department of Biophysics, Faculty of Medicine, University of Istanbul, Istanbul, Turkey

AIM: Doxorubicin (DOX) is an anticancer drug widely used for cancer treatment, but has toxic effects on many tissue including the heart. DOX may exacerbate the deficit of energy production by decreasing mitochondrial energy production, blocking the AMP-activated kinase and trigger apoptosis known as programmed cell death pathway. AMPK has been associated between cell’s survival and death pathways. DOX inhibits AMPK. However, the mechanism of AMPK by DOX is not completely understood. The aim of the study was to investigate whether inhibition of AMPK in heart failure-induced by DOX is through TLR4 and/or mTOR or not. METHODS: 5 groups were: control, DOX, DOX+TLR4 (Resatorvid, DT), DOX+mTOR (Rapamicin, DR), and DOX+mTOR+TLR4 (DRT) by using H9c2 cell line. At different time points, western blot and qRT-PCR were performed to identify the protein and gene expressions related to apoptosis. Using the same time points, apoptosis was determined by using TUNEL and FITC-IETD-FMK methods. One-way-ANOVA was used for evaluating statistical analysis. RESULTS: TLR4 protein expression was decreased in DOX group, but high at DR and DT groups. AMPK and PAMPK protein expressions were decreased, AMPK elevated at DR. PAMPK was high at DR, DT and DRT groups. The protein expression of cytochrom-c increased at DOX group, but decreased at DR, DT and DRT groups. The number of TUNEL positive and active caspase 8 cells at DOX group was higher than control. However, the number of TUNEL positive and active caspase-8 cells at DR, DT, DRT was lower vs DOX group. CONCLUSIONS: AMPK inhibition through TLR4 receptor, resulting from energy deficiency via MAPK at heart failure-induced by DOX plays an important role for triggering apoptosis. HMGB1 plays an important role as amplifying DOX toxicity in the heart by TLR4 via MAPK signal transduction. This study was financially supported by TUBITAK (114S118).

Evaluation of Blood Flow Heterogeneity During Reperfusion by Using Laser Speckle Imaging technique
Gülsüm Karduz1, Kübra Vardar1, Uğur Aksu1, Fevzi Toraman2
1Department of Biology, Istanbul University, Istanbul, Turkey
2Department of Anesthesiology and Reanimation, Acıbadem University, Istanbul, Turkey

AIM: Reperfusion process following ischemia leads to impairment of local microvascular control mechanisms. Impaired control mechanisms leads to perfusion heterogeneity. Previous studies related to perfusion heterogeneity using Laser Speckle Imaging (LSI) technique has only been experimentally performed on kidney. We investigated the link between prolonged period of ischemia and reperfusion heterogeneity by using LSI technique in human skin microcirculation.

METHODS: Healthy men and women volunteers were included (n=11). Ischemic processes were performed with pressure cuff connected to the right arm. Ischemia was confirmed with the pulse transducer simultaneously connected to finger. Thirty-45 and 60 seconds ischemic episodes were performed in groups. One-minute reperfusion period was provided following each ischemic period. All perfusion images from the outer-surface of the hand were recorded by using LSI device. Moreover, perfusion heterogeneity was determined with histogram analysis. All data were presented as mean±SD. All data were analyzed using Student’s t-test and ANOVA. P<0.05 was considered to be statistically significant.

RESULTS: Baseline perfusion value was found to be as 355.2±30.1 PU. While pulse is not received in the process of ischemia, perfusion values were measured as 28.7±1.7 PU (p<0.001). The maximum perfusion values after 30-45-60 seconds ischemic episodes were measured respectively as 408.3±60.5 (p>0.05), 422.2±60.8 (p<0.05) and 479.2±86.0 PU (p>0.05). However, when compared to baseline, the percentage changes of maximum perfusion after ischemia were found to be as 61.8±17.3, 21.8±8.5 (p<0.05; compared to 30s ischemic group) and 20.8±7.4 (p<0.05; compared to 30s ischemic group). At the end of one min of reperfusion, percentages of changes were significantly difference found as 41.8±12.1, 8.9±6.4 in 30 and 45-second ischemic episodes (p<0.05). In addition, a normal distribution histogram at the baseline was found around 1,000 perfusion unit, while an asymmetric histogram distribution around 700 PU, shifted to left was measured in one minutes of reperfusion.

CONCLUSIONS: Prolonged ischemic period leads to decrease in reactive hyperemia response and results to perfusion heterogeneity.

The Effects of Ghrelin and Orexin Antagonists in LPS-induced Sepsis Model
Sümeyle Cilingiz1, Evren Kılınç2, Gamze Kırıkçı3, Meltem Kolgazi2
1Acıbadem University School of Medicine Department of Physiology, Istanbul, Turkey
2Acıbadem University School of Medicine Department of Biophysics, Istanbul, Turkey
3Acıbadem University School of Medicine Department of Anatomy, Istanbul, Turkey

AIM: Sepsis is a generalized inflammatory response, which involves organ systems remote from the locus of the initial infectious insult,
involves the release of cytokines and the subsequent formation of reactive oxygen and nitrogen species. In recent years, there is increasing evidence implicating that appetite-regulating peptides have anti-inflammatory effects. We aimed to investigate the roles of ghrelin and orexin in LPS induced endotoxemia by using antagonists of these peptides. METHODS: Sprague Dawley rats (male=female) (250-300g; n=8/group) were randomly divided into 4 groups: (1) Control group was treated with saline for 4 days; (2) Endotoxemia (E) group was treated with saline for 3 days and on 4th day was injected with LPS (E. coli serotype 0111:B4; in saline; 10 mg/kg ip); (3) E + ghrelin antagonist group was treated with D-Lys3-GHRP-6 (6 mg/kg ip) for 3 days and on 4th day was injected with LPS; (4) E + orexin antagonist group was treated with almorexant (30 mg/kg ip) for 3 days and on the 4th day was injected with LPS. All rats were decapitated 6 h after LPS injection and their duodenum, stomach, liver and colon samples were collected. Tissue samples were analyzed for myeloperoxidase (MPO) activity as the indicator of neutrophil infiltration. Student’s t test was used for statistical analysis. RESULTS: LPS injection increased MPO activity in all tissues (p<0.05-0.01). While MPO activities in duodenum, stomach and colon tissues were decreased with ghrelin antagonist, MPO levels increased in kidney and liver tissues compared with endotoxemia group. Besides, orexin antagonist caused decreases in MPO activity in duodenum and increases in colon and kidney tissues (p<0.05). CONCLUSIONS: The results of our research give rise to the thought that ghrelin and orexin may have different effects on LPS-induced sepsis. Further experiments are needed about the effects of these peptides in different inflammatory conditions.

PC021
Effect of Thymoquinone Administration on Erythrocyte Fragility in DiethylNitrosamine Administered Rats
Hawar Ahmad Muhammed Amin1, Okan Arıhan2
1Yüzüncü Yıl University, Faculty of Medicine, Department of Medical Histology and Embryology, Van, Turkey
2Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology, Van, Turkey

AIM: Diethylnitrosamine is used as preservative in foods but found to exert carcinogenic effects. *Nigella sativa* plant has anti-tumoral, anti-inflammatory and antidiabetic activity. Aim of this study was to investigate the effect of thymoquinone which is one of the active ingredients of *Nigella sativa* on erythrocyte fragility in diethylnitrosoamine administered rats.

METHODS: 28 male Wistar-albino rats were divided into four groups; Control group (Saline/5 days, i.p.), thymoquinone group (4 mg/kg/5 days/p.o.), diethylnitrosamine group (5F/5 days /i.p. and diethylnitrosamine 200 mg/kg/i.p. for two consecutive days) and diethylnitrosamine + thymoquinone group (4 mg/kg/5 days thymoquinone p.o. and diethylnitrosamine 200 mg/kg/i.p. for two consecutive days). Erythrocyte fragility, hemoglobin and hematocrit counts were performed. Kruskal-Wallis and Tukey tests were performed for statistical analysis.

RESULTS: Number of erythrocytes was increased in diethylnitrosoamine administered groups significantly compared with other groups (p<0.05). Hematocrit value was found to be higher in diethylnitrosamine group compared to control and thymoquinone groups (p<0.05). Hemoglobin value was found to be higher in diethylnitrosamine administered groups than groups without diethyl-nitrosamine administration (p<0.05). No significant change in erythrocyte fragility was observed.

CONCLUSIONS: Augmentation in erythrocyte, hemoglobin and hematocrit count due to diethylnitrosamine administration and an opposite impact of thymoquinone administration were observed.
PC022

Evaluation of the Prevalence of Thyroid Autoantibodies in Patients with Alopecia Areata

Fethullah Gerin1, Hülya Albayrak2, Zekeriya Soydan1, Umit Şener2, Mehmet Emin Yanık3, Mustafa Erboğa4, Ahmet Gürel3

1Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
2Department of Dermatology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
3Department of Physiology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
4Department of Histology and Embryology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey

AIM: Alopecia Areata (AA) is a disease characterized by hair loss from the body. Although some factors such as genetic, atopy, oto-immunity, endocrine dysfunctions, stress, and infections play role in pathogenesis of AA, the etiology of AA is not fully understood. Prevalence of thyroid dysfunctions and autoantibody positivity are more common compared to general population. We aimed to investigate the prevalence of thyroid dysfunctions and autoantibody positivity among the AA patients.

METHODS: AA patients who presented our dermatology clinic between January 2009 and August 2015 were reviewed. The patients who had thyroid function tests (TSH, FT3, FT4) and thyroid autoantibodies (anti-TG, anti-TPO) were enrolled in the study. Pregnant patients and the patients who had not these tests results were excluded from the study.

RESULTS: 448 AA patients were detected during the period. Among these patients, 195 patients had TSH, 153 patients had FT4, 132 patients had FT3, 81 patients had anti-TG, and 130 patients had anti-TPO test results. The thyroid function and autoantibody test result revealed that the prevalence of FT4, FT3 deficiency and anti-TG, anti-TPO positivity were 8.5%, 1.5%, 14.8%, 18.5%, respectively.

CONCLUSIONS: Thyroid dysfunctions and autoantibody positivity may occur concurrently with AA. The thyroid function tests and autoantibody levels should be followed-up in AA patients.

PC023

The Levels of CD35, CD46 on Peripheral Leukocyte and Erythrocyte in Turkish Population: The Sample of Antalya Education and Research Hospital

Belkıs Salman Koçtekin1, Aysegül Uğur Kurtoğlu2

1Blood Transfusion Centre, Antalya Education and Research Hospital, Antalya, Turkey
2Department of Biochemistry, Antalya Education and Research Hospital, Antalya, Turkey

AIM: The complement system and complement regulatory proteins (CRP) play important roles in the physiopathology of many diseases. CD35 (complement receptor 1, CR1) and CD46 (membrane cofactor protein, MCP) are CRPs that are related to diseases. Many studies reported infections, thrombosis, and autoimmune diseases developing due to genetic variations of these proteins. In this study, we aimed to measure the expression levels of CD35 and CD46, on peripheral leucocytes and erythrocytes in healthy Turkish population.

METHODS: The study included in 20 healthy volunteers whose ages ranged from 20 to 40 years. Blood samples were analysed by flow cytometry by using CD35 (PE Mouse Anti-Human), CD46 (FITC Mouse Anti-Human) antibodies. The data were evaluated by IBM SPSS Statistics 20 (SPSS/IBM, Chicago, IL, USA).

RESULTS: CD35 level was found to be 92% on neutrophils, 84% on monocytes, 34% on erythrocytes and 17% on lymphocytes. CD35 levels were significantly lower on erythrocytes and lymphocytes, compared to monocytes and neutrophils (p<0.05). The CD46 level was detected approximately 99% on lymphocytes, monocytes and neutrophils whereas no expression was detected on erythrocytes. CD46 levels of erythrocytes were significantly lower compared to lymphocytes, monocytes, and neutrophils (p<0.05).

CONCLUSIONS: Reason of genetic variations, CRP levels of special to the population should be kept in mind in CRP-related diseases such as infection, cancer, autoimmune diseases and Alzheimer’s Disease. We think large scale studies in Turkish population are essential to investigate CRP and diseases relationship.

PC024

Protective Effect of Polydatin on Spleen Ischemia-reperfusion Injury in Rats

Filiz Özyiğit1, Ayşe Nur Değer2, Sayıt Altkıtaş3, Sezgin Zeren4, Zülfü Bayhan5, Mustafa Kavasoğlu5, Hasan Şimşek6, Özlüm Arık1, Hakkı Değer8

1Dumlupınar University Faculty of Medicine Dept of Pharmacology, Kütahya, Turkey
2Dumlupınar University Faculty of Medicine Dept of Pathology, Kütahya, Turkey
3Dumlupınar University Faculty of Medicine Dept of Biochemistry, Kütahya, Turkey
4Dumlupınar University Faculty of Medicine Dept of General Surgery, Kütahya, Turkey
5Dumlupınar University, Faculty of Arts and Sciences Dept of Biochemistry, Kütahya, Turkey
6Dumlupınar University Faculty of Medicine Dept of Physiology, Kütahya, Turkey
7Dumlupınar University Faculty of Medicine Dept of Medical Biostatistics, Kütahya, Turkey
8Dumlupınar University Evliya Çelebi Hospital, Neurosurgery Clinic, Kütahya, Turkey

AIM: Polydatin (3,4,5-trihydroxystibene-3-β-mono-D-glucoside), isolated from the Polygonum cuspidatum, is widely used in traditional Chinese medicine (1). Polydatin is a compound with antioxidant and anti-inflammatory effects. The aim of this study was to investigate whether there is a protective effect of polydatin in spleen ischemia-reperfusion injury.

METHODS: Fifty adult male Sprague-Dawley rats (250-300g) were randomly divided into 5 groups as: control, sham, ischemia (I), ischemia/reperfusion (I/R), and polydatin+I/R. Polydatin was administered intraperitoneally 1 h before I/R. Splenic artery and vein were ligated. 30 min of ischemia and 60 min of reperfusion was performed. The spleen was excised. MDA, SOD, CAT as biochemical parameters; caspase-3 for apoptosis and proliferating cell nuclear antigen (PCNA) for cell proliferation as immunohistochemical parameters were determined. Descriptive statistics, normality test, Kruskal-Wallis, one-way ANOVA and post hoc Tukey tests were used. P<0.05 was considered statistically significant.
RESULTS: Caspase-3 level showed a significant decrease in polydatin + I/R group compared to I/R group. PCNA level showed a significant increase in polydatin + I/R group compared to I/R group. Tissue MDA level showed a significant increase in polydatin + I/R group compared to I/R group. SOD level showed a significant increase in polydatin + I/R group compared to control group.

CONCLUSIONS: Our results indicate that 20 mg/kg dose of polydatin can prevent I/R-induced spleen injury.

PC025
Mean Platelet Volume and Platelet Distributed Width Levels in ABO Blood Groups

Hakim Çelik1, Mehmet Aslan2, Adnan Kirmi1
1Department of Physiology, Medical Faculty, Harran University, Şanlıurfa, Turkey
2Department of Internal Medicine, Medical Faculty, Yüzüncü Yıl University, Van, Turkey

AIM: Although there are many researches to indicate the relationship between ABO blood groups and atherosclerosis and thrombotic events, there is no data explaining these relations precisely. Most of previous studies have shown the lower risk of O blood group than others in terms of the severity of atherosclerosis and acute thrombotic events. We aim to investigate if there are differences in platelet counts (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and plateletcrit (PCT) among ABO blood groups.

METHODS: We prospectively recruited 301 healthy subjects (99 women and 202 men, mean age: 33±8 years) who were followed randomly divided into 16 groups. 62 of the rats were applied with gonadectomy, 62 of them were applied with sham-gonadectomy. Borax in the amount of 0.7gr/L was added into drinking waters of the groups to be applied with borax for a month. The exercise groups were exercised in forced swimming exercise for a month. Intracardiac blood samples were taken from all groups before sacrifice. The serum was separated, and IgG, IGM, IGA levels were evaluated using the ELISA method.

RESULTS: IgG levels in the male gonadectomy-exercise group were higher than the levels in the gonadectomy, gonadectomy-borax and exercise groups. IgG levels in the gonadectomy-borax-exercise group were higher than the levels in the control group, similar to other groups. IgG levels in the female group fed with borax and applied with ovarioectomy were higher than the levels in the group fed with borax and applied with ovarioectomy. Similar IgM values were found in the male and female groups. IgA levels were higher in the gonadectomy-borax-exercise group than the control group among female groups.

CONCLUSIONS: Consequently gonadectomy, exercise, and borax, when applied alone, were not effective in immunoglobulin levels in both sexes among rats. It was seen that gonadectomy-exercise and gonadectomy-borax applications caused an increase in IgG levels. While IgA levels increased among female rats applied with all three applications, IgM levels did not change in both sexes. We suggest that borax preparations and exercise might make positive contributions to the immune system in case of gonadal hormone deficiency.

PC026
The Effect of Gonadectomy, Exercise and Borax Application on Serum Immunoglobulin Levels Among Male and Female Rats

Ertuğrul Keklik1, Bekir Çoksevim1, Umut Bakkaloglu2
1Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
2Department of Parasitology, Faculty of Medicine, Erciyes University, Kayseri, Turkey

AIM: We investigated the effects of gonadectomy, exercise among rats and borax added to their normal diet on immunoglobulin levels.

METHODS: Eight-week-old Wistar albino rats (64 males, 60 females) were used in the experiments. Male and female rats were randomly divided into 16 groups. 62 of the rats were applied with gonadectomy, 62 of them were applied with sham-gonadectomy. Borax in the amount of 0.7gr/L was added into drinking waters of the groups to be applied with borax for a month. The exercise groups were exercised in forced swimming exercise for a month. Intracardiac blood samples were taken from all groups before sacrifice. The serum was separated, and IgG, IGM, IGA levels were evaluated using the ELISA method.

RESULTS: IgG levels in the male gonadectomy-exercise group were higher than the levels in the gonadectomy, gonadectomy-borax and exercise groups. IgG levels in the gonadectomy-borax-exercise group were higher than the levels in the control group, similar to other groups. IgG levels in the female group fed with borax and applied with ovarioectomy were higher than the levels in the group fed with borax and applied with ovarioectomy. Similar IgM values were found in the male and female groups. IgA levels were higher in the gonadectomy-borax-exercise group than the control group among female groups.

CONCLUSIONS: Consequently gonadectomy, exercise, and borax, when applied alone, were not effective in immunoglobulin levels in both sexes among rats. It was seen that gonadectomy-exercise and gonadectomy-borax applications caused an increase in IgG levels. While IgA levels increased among female rats applied with all three applications, IgM levels did not change in both sexes. We suggest that borax preparations and exercise might make positive contributions to the immune system in case of gonadal hormone deficiency.
The Effects of Dental Bleaching Agent and Crithmum Maritimum L. on Dental Pulp Stem Cell (DPSC)

Mukaddes Mergen Dalyanoğlu, Sebahat Turgut, Yusuf Ekbiç, Ahmet Ermiş, Ali Çelik, Vural Küçükatay

1Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey
2Pamukkale University, Faculty of Science, Department of Biology, Denizli, Turkey

AIM: Tooth bleaching agents contain peroxide are asserted to cause potential cellular damage. For that reason, our study aimed to find the effects of application of hydrogen peroxide on dental pulp stem cell (DPSC) cultures and whether CM has any protective effects against the potential damage to occur.

METHODS: Five study groups were performed, control (C) group, 2 Hydrogen Peroxide (2HP) (2 µg/ml), 6 Hydrogen Peroxide (6HP) (6 µg/ml), CM (2 µg/ml)+2HP, CM (2 µg/ml)+6HP groups. Reproduced DPSC in culture media and treated according to the assigned groups, the cells were removed from their media at 0, 24, 72 hours, and DNA damage was measured using comet assay method and TNF-alpha, IL-6, TOS, TAS levels were measured using ELISA method. Kruskal Wallis variance analysis was used for independent samples and Mann Whitney-U Test with Bonferroni correction was used for post hoc comparisons.

RESULTS: Tail intensity was observed significantly increase in groups treated with only HP compared to the control group (p<0.001). Measurements performed at 24 hours showed significant decrease in CM groups versus 2HP group. Tail intensity in CM groups at all time was found lower significantly than the 6HP group. Tail moment was observed significant increase in 2HP and 6HP groups at all time compared to the control group. At 24 hours, it was found significant decrease in CM groups compared to the 2HP group. Tail moment was observed significantly different between CM groups and the 6HP groups at all time points. We have not observed a significant difference between TNF-alpha, IL-6, TAS, TOS and OSI levels of the groups.

CONCLUSIONS: As a result, our findings demonstrate that HP leads to genotoxicity, and that CM decreases HP-induced DNA damage. Our results indicated that the HP dosages used have not effect on the oxidative and inflammatory processes.
PC030
Investigation of the Effect of CAPE on Urotensin II and TGF-β1 Levels on Experimental Osteonecrosis Rat Model
Recep Dokuyucu1, Okan Tutuk1, Bülent Göğebakan5, Hatice Doğan4, Nilüfer Bilgiç2, Zeynel Abidin Taş3, Fatih Sefil4, Cemil Tümer1
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
3Department of Pathology, Hospital of Adana Numune Education and Research, Adana, Turkey

AIM: Urotensin II (UII) which has a role with its profibrotic features on fibrosis diseases is known the most vasoconstrictor agent. It is thought that these profibrotic features can be formed through transforming growth factor (TGF-β1) and Rho-kinase. In our study, we aimed to investigate the effect of CAPE on UII and TGF-β1 levels on steroid-induced osteonecrosis in rats.

METHODS: 30 male Wistar albino rats were classified into 4 groups as group I: control (C) (n=7); group II: methylprednisolone acetate (MPA) (n=8); group III: CAPE (n=7) and group IV: CAPE with methylprednisolone acetate (CAPE+MPA) (n=8). Group III and IV received CAPE intraperitoneally at a concentration of 10 μmol/kg for two weeks. After treatment of CAPE, group IV and II received a single dose of 15 mg/kg MPA subcutaneously once a week for 2 weeks and so osteonecrosis model was induced. At the end of study, femur and blood samples were collected for biochemical and histopathological analysis by sacrificing rats. Hematoxylin-eosin and immunohistochemical stains (4–HNE, 8-OHdG) were used for histopathological evaluation.

RESULTS: In histopathological evaluation, it was found that the fatty degeneration increased significantly in the MPA group as compared with the other groups (p < 0.05). Although there were myeloid necrosis and osteocyte necrosis in the MPA group, myeloid necrosis and osteocyte necrosis were not observed in the CAPE and CAPE+MPA groups. At the same time plasma UII and TGF-β1 levels were statistically higher in MPA group than control group (p < 0.05). But plasma UII and TGF-β1 levels were significantly decreased in treatment group (CAPE+MPA) than the MPA group (p < 0.01). Moreover, it was found that there was a significant correlation between UII and TGF-β1 (p=0.003, r: 0.920).

CONCLUSIONS: The result of this study supported that CAPE may be an effective agent on steroid-induced osteonecrosis by decreasing UII and TGF-β1 levels.

PC031
Cytotoxic Effects of Ursolic Acid and its Derivative on Breast Cancer Cell Lines
Burcu Culhaöğlu1, Leyla Türker Şener1, Hüsnüye Birman2, İsıl Albini3, Gülşan Topçu4
1Bezmialem Vakıf University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
2Istanbul University, Faculty of Medicine, Department of Biophysics, Istanbul, Turkey
3Istanbul University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
4Bezmialem Vakıf University, Faculty of Pharmacy, Department of Pharmacognosy, Istanbul, Turkey

AIM: Terpenoids are one of the important secondary metabolites of the plants. Triterpenoids have skeleton with 30 carbons, consisting of different pharmacological features due to diversity of their chemical structures. They are antimicrobial, anti-inflammatory, anti-hyperlipidemic, anti-ulcer, hypoglycemic, antifertility, antcarcinogenic, cytotoxic and protect against toxicity activities. The present study was designed to investigate their cytotoxic effects on MDA-MB-231 cell line.

METHODS: Cytotoxic activity measurement was done with xCELLingence System. MDA-MB-231 breast cancer cells were reproduced in a suitable medium and incubator. Antiproliferative effect of ursolic acid and 3-hydroxyimino ursolic acid were measured using a real-time cell analysis system (xCELLingence System). Cell were cultured in 96-well plates with 10000 cells in each well. We evaluated the cytotoxic effects of these terpenoids at 0 μM dimethyl sulfoxide (DMSO)50, 100, 500, 1000 μM concentrations for 72 h of incubation with cells. Antiproliferative effect was evaluated for 72 h after determining the number of cells. IC50 values of compounds were measured with a special quantitative value software. Statistical analysis was performed using one-way ANOVA. P<0.05 was considered to be statistically significant.

RESULTS: In this study, ursolic acid and 3-hydroxyimino ursolic acid were analysed at 0.50, 100, 500, 1000 μM concentrations against MDA-MB-231. 3-hydroxyimino ursolic acid showed cytotoxic effect at 25 μM and higher doses and did not show any significant cytotoxic effect at 6.25 and 12.5 μM. There was no cytotoxic effect on human umbilical vein endothelial cells (HUVECs).

CONCLUSIONS: These terpenoids can be possible candidates for anticancer activity in breast cancer treatment. Our studies are still going on other natural and synthetic triterpenoids.

PC032
Effect of Tetracycline Antibiotic Minocycline on Oxidant/antioxidant Parameters on Burn-induced Remote Organ Damage in the Rat
Murat Sancar1, Gazi Giray Tarhan1, Emre Koçak1, Zeynep Budancamanak1, Seda Karaaslan1, Elif Bahadir2, Elif Kervancıoğlu Demirci3, Meral Yükselioğlu4, Feriha Erca5, İnci Alicant6
13rd Year Student, Marmara University School of Medicine, İstanbul, Turkey
2Department of Physiology, Marmara University School of Medicine, İstanbul, Turkey
3Department of Histology and Embryology, Marmara University School of Medicine, İstanbul, Turkey
4Marmara University Vocational School of Health Services, İstanbul, Turkey

AIM: Systemic inflammation due to thermal injury is an important cause of morbidity and mortality. Second generation, semi-synthetic tetracycline analogue minocycline has anti-inflammatory and anti-apoptotic effects in addition to its antibacterial action. This study aimed to evaluate the effect of minocycline on burn-induced remote organ damage.

METHODS: Thirty-two female Sprague-Dawley rats (250-300 g) were used. Burn and sham burn groups were immersed in 90°C and 25°C waterbaths for 10 s under ether anesthesia, respectively. Treatment groups received minocycline (20 mg/kg; twice daily; orally) or inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (100 mg/kg/day; intraperitoneally) following burn. Trunk blood, liver, lung and kidney samples were collected 24 h after burn or
The Healing Effect of Resveratrol on Excisional Wound
Mehmet Yalçın Günal, Sule Ayla, Mehmet O元左右, Nejda Bedri, Ismail Aslan, Çenk Ersavaş, Muzaffer Beyza Çetin Özansoy, Erdem Yeşilada, Ertuğrul Kılıç
1 Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
2 Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
3 Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
4 Department of General Surgery, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
5 Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
6 Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey

Aim: We aimed to investigate the healing effect of a cream containing 1% and 5% of resveratrol in excisional wound model in rats.

Methods: Wistar albino male rats (250-300 g) were divided into four groups. Each group contained 8 rats. Rats were anaesthetized by using ketamine/xylazine and with 5-mm punch biopsy apparatus excisional wounds were made on their dorsal regions. Madecassol base cream, as a vehicle in madecassol, was applied to the animals in the control group. Madecassol was applied to the second group (group M), madecassol base containing 1% resveratrol and madecassol base containing 5% resveratrol were applied third and fourth groups, respectively. Applications were done topically each day for 5 days. Wounds were photographed and calculated by Imagej software. In the twelfth day all rats were sacrificed and tissue samples were histologically analyzed.

Results: Wound surface areas at 2nd and 8th days did not show any significant difference with respect to control group. On the 4th day a significant difference was observed between the group M and controls (P=0.048), and on the 6th day significant differences were determined in third (P=0.005) and fourth groups (P=0.004) with respect to control group. Statistically significant differences were also observed between control group and group M (P=0.01), third group (P=0.02) and fourth group (P=0.000) on the 10th day of the study; at the end of the study (twelfth day) the only significant differences were in the group M (P=0.037) and the fourth group (P=0.003) with respect to controls. In the histological examination, there were no significant differences in the third and fourth groups with respect to control group in terms of epidermal, dermal regeneration, granulation and angiogenesis.

Conclusions: Creams containing 1% and 5% resveratrol may have positive effects on excisional wound healing.
PC035
Revealing the Epigenetic Mechanisms on the Pathogenesis of Lung Damage Caused by Mustard Analogue Mechlorethamine
Ömer Aytuğlu1, Ahmet Korkmaz1, Turgut Topal1, Kahraman Ateş2, Bülent Uysal1, Fatih Kalkan1, Şükrü Öter1
1Department of Physiology, Gülhane Military Medicine Faculty, Ankara, Turkey
2Department of Biophysics, Gülhane Military Medicine Faculty, Ankara, Turkey

AIM: Besides the lack of antidote, the popularity of mustard gas results from its easy produce, low cost and long storage time. Mustard gas causes DNA alkylation, nitrooxidative stress and inflammatory reactions by binding to macromolecular structures on DNA. “Mustard lung” can occur years after mustard exposure, suggesting that epigenetic changes may cause damage in the chronic phase.

METHODS: In this study, 300-330g weight, 138 Sprague-Dawley male rats were used. Mustard toxicity was established as a transdermal application of 25mg/kg dose of mechlorethamine to the shaved back of the rats. The rats were divided into 5 groups, including the Sham, Control (Mechlorethamine), Mechlorethamine+Valproic acid (VA), Mechlorethamine+Azacitidine (AZ) and Mechlorethamine+Valproic acid+Azacitidine (VA+AZ) by a simple random sampling method.

RESULTS: At the end of the study, the average weights of rats were decreased significantly in all groups compared to the sham group but only average weights in the VA group increased significantly compared to the control group. Also highest survival rate was obtained for VA group (96%). Urine NOx levels, tissue apoptosis, oxidant-antioxidant, cytokine, Nrf2 and COX2 levels were analyzed. Analysis showed that VA group is superior to the other treatment groups.

CONCLUSIONS: The study compared Histone Deacetylase (HDAC) inhibitor VA and DNA Methyltransferase inhibitor AZ. VA showed an obvious superiority in many parameters. Inhibition of histone deacetylation, probably paved the way for a group of repair enzymes or pathway. When all the results are evaluated, inhibition of HDAC enzyme with VA, runs an important epigenetic mechanism in mustard damage. Anti-inflammatory agent combination with VA at the next stage is thought to be the ideal treatment option. This study also “1125628” coded TUBITAK project.

PC036
Comparison of the Effectiveness of Various Antioxidants on Lung Damage Caused by Sulfur Mustard And Presenting Their Effects on Serum Parameters
Fatih Kalkan3, Ömer Aytuğlu1, Turgut Topal1, Bülent Kurt1, Emin Özgür Akgül1, Ahmet Korkmaz2
1Department of Physiology, Gülhane Military Medicine Faculty, Ankara, Turkey
2Department of Pathology, Gülhane Military Medicine Faculty, Ankara, Turkey
3Department of Chemistry, Gülhane Military Medicine Faculty, Ankara, Turkey

AIM: Mustard as an important chemical warfare agent causes damage in body through DNA alkylation, nitrooxidative stress and inflammatory reactions. After mustard gas exposure some symptoms appear in the body, especially in lung, eyes and skin, in a dose dependent manner. Lots of antioxidants were tried in the treatment of mustard damage, which is still incurable. We targeted at this study presenting the effectiveness of the various antioxidants against lung damage caused by sulfur mustard.

METHODS: 60 male rats were used in our study. By setting the model “2 chloroethyl sulfide”(CEES), which is known as a sulfur mustard agent and is half-mustard, is applied as 1 mg/kg single dose via intracheal route. The animals were separated into 6 groups as Sham, Control (CEES), CEES+N-Acetyl Cysteine (NAC), CEES+Lipoic acid (LA), CEES+Mesna, CEES+ Amifostine (AMF).

Within 15 min after setting of toxicity model, the curative therapeutic agents were started to be applied. Treatments were applied for 3 days. Then, the rats were sacrificed; blood and lung tissue samples were taken for histopathological examination and biochemical analysis.

RESULTS: When we look into results of death rates, we observed that 60%of death rate in CEES group was decreased only in AMF and LA applied groups (p<0.05). At histopathological examination, increased edema, hemorrhage and inflammation were decreased in AMF and LA applied groups (p<0.05). There were no significant results in biochemical analysis.

CONCLUSIONS: In the light of these data, it is understood that it should be tested with an more appropriate model if the measured parameters in serum were used or not in assessment of situation and follow up of acute lung toxicity and besides we concluded that antioxidants like Amifostine and α-lipoic acid promises hope in acute lung toxicity caused by sulfur mustard.

PC037
Assessment of Respiratory Function Test Parameters for Workers and Officers Who Work in Various Business Lines
Yıldız Aktaş1, Nurhan Ekerbiçer2, Beyhan Cengiz Özyurt3, Ercan Ergin4
1Savastepe State Hospital, Balikesir, Turkey
2Celal Bayar University, Medical Faculty, The Department of Physiology, Manisa, Turkey
3Celal Bayar University, Medical Faculty, The Department of Public Health, Manisa, Turkey
4Health Sciences University Tepecik Training and Research Hospital, Internal Diseases Clinic, Izmir, Turkey

AIM: It is thought that the microparticles adversely affect the human lung mechanics in many studies on asbestosis, silicosis and coal worker pneumoconiosis. We aimed to compare Pulmonary Function Tests (PFT) that the clay, wood and poultry (chicken) dust in exposed workers with office staff on living at the same altitude.

METHODS: In order to separate factors which can affect lung mechanics, face-to-face interviews and questionnaires were applied before pulmonary function test. After Ethics Commissions permission and approval of related work place, the pulmonary function tests were repeated 3 times and the results are obtained for working at least for 5years of 25 workers of clay package, 18 workers of poultry farm, 27 workers exposed to wood dust and 40 office workers as a control group. PEF(I/min), FEV1(I), FVC(I), Ratio(%), FEF25 75(I/sec) results were examined by expert counselor and appropriate results were used for evaluation.For the statistical analysis of obtained data SPSS 16.0 program was used. The data were evaluated.
RESULTS: There were statistically significant no differences age, gender, income, residential areas, smoking and alcohol use patterns. PEFl/(min), FEV1(l), FVC(l), Ratio(%) FEF25 75 (l/sec) values were different between working groups compared with control group (p<0.005).

CONCLUSIONS: It was found to be effective on pulmonary mechanics of encountered at any time of the powder in the atmospheric air, except of irritants also. On occupational health and safety, it should be aimed to increase training on wearing mask and glasses and increase safety measures for employees’ health at workplace.

PC038
Influence of Exercise Intensity on Ventilation During Constant Load Exercise Test in Sedentary Male Subjects
Fethi Ahmet Uğur¹, Sermin Algül², Oğuz Özçelik³
¹Fırat University, Faculty of Medicine, Department of Physiology, Elazığ, Turkey
²Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology, Van, Turkey

AIM: During exercise, increased metabolic demand must be accompanied with an increased ventilation (VE). Anaerobic threshold (AT) and critical power output (CPO) describe two important exercise intensity associated with specific metabolic set points. In the present study, influence of exercise intensity corresponded to AT and (CPO) on VE were evaluated.

METHODS: Sedentary (n=11, 20.8±0.6 yr, 74.9±1.7 kg) male subjects, initially performed an incremental exercise test using a cycle ergometer to determine AT, CPO. Then, each subjects performed three constant load exercise tests: work load 25% below AT (97.8±4.7 W), at the AT (130.4±6.4 W) and at the CPO (156.7±7.2 W) for 15 min. The study protocol was approved by Local Ethics Committee. Ventilatory and pulmonary gas exchange parameters were evaluated breath-by-breath using metabolic gas analyser. Values are expressed as means±S.E.M., compared by ANOVA test and p < 0.05 was accepted as statistically significant.

RESULTS: VE were found to be 43.68±1.7 L/min (25% below AT), 1.628±0.1 L (25% below AT), 1.875±0.1 L (AT) 2.192±0.1 L (CPO). Despite significant differences between VE values among the tests (p<0.05), there were no statistically significant (p>0.05) differences between VE values normalised to body weight (BW) and applied work load (W): 5.96±0.30 ml/min/BW/W, 6.10±0.35 ml/min/BW/W, 6.31±0.39 ml/min/BW/W.

CONCLUSIONS: VE response to the work load 25% below AT (low intensity), AT (highest work load without increased metabolic acidosis, moderate intensity) and CPO (highest sustainable work load without fatigue, high intensity) were coincided approximately with the value of 6.00 ml/min/BW/W. Increased VT is an important factor on VE despite altered metabolic intensity. Importantly, further studies with higher number of subjects with different fitness status need to be performed to support 6.00 ml/min/BW/W values could be use as an criteria to evaluate ventilatory efficiency to applied exercise work load.

PC039
FEF25–75/FVC Measurements in COPD, Asthma and Sarcoidosis Patients
Niňal Enşen¹, Tunçalp Demir²
¹İstanbul University Cerrahpaşa Faculty of Medicine, Department of Physiology, Istanbul, Turkey
²İstanbul University Cerrahpaşa Faculty of Medicine, Department of Lung Diseases, Istanbul, Turkey

AIM: It was suggested in 1970s for the first time that the variables of maximal flow caused by unequal growth between lung parenchyma and airway. It was indicated that FEF25-75/FVC rate (DYSANAPSIS) is the best parameter, which shows the relationship between airway and parenchyma (1). Also, it was stated that FEF 25-75/FVC rate is associated to the hypersensitivity of the airway as well (2). It was indicated that FEF25-75 and FEF25-75 % of sarcoidosis patients, despite the lack of significant changes in the respiratory functions, the importance of individual changes were argued. In another study that is conducted with juveniles, no such correlation was observed.

METHODS: Our study was especially conducted for the investigation of the link between FEF 25-75/FVC ratio and respiratory functions in different disease groups that includes airway disease or parenchymal involvement. In our study, the relationship between FEF 25-75/FVC rate and pulmonary functions on 623 patients in total, who are treated at Istanbul University, Cerrahpaşa Medical Faculty for KOAH (GOLD, 22 Women/196 Men), asthma (GINA, 129 Women/57 Men) and sarcoidosis (162 Women/57 Men) was analyzed. The pulmonary function tests of patients were performed via SensorMedics Vmax22 spirometer. Data was analysed by SPSS20.

RESULTS: Although a correlation was found in the FVC and FEF 25-75/FVC rate and respiratory functions in different disease groups that includes airway disease or parenchymal involvement. In our study, the relationship between FEF 25-75/FVC rate and pulmonary functions on 623 patients in total, who are treated at Istanbul University, Cerrahpaşa Medical Faculty for KOAH (GOLD, 22 Women/196 Men), asthma (GINA, 129 Women/57 Men) and sarcoidosis (162 Women/57 Men) was analyzed. The pulmonary function tests of patients were performed via SensorMedics Vmax22 spirometer. Data was analysed by SPSS20. RESULTS: Although a correlation was found in the FVC and FEF 25-75/FVC in KOAH and asthma cases, it was not observed in the cases of sarcoidosis. FEV1, FEV1%, FEV1/FVC, FEV1/FVC%, FEF25, FEF50, FEF50%, FEF25-75, FEF25-75-75%, FEV25-75/FVC parameters was found different as statistically in all groups(p<0.001). Further, although a correlation was found in the FVC and FEF25-75/FVC in KOAH and asthma cases, it was not observed in the cases of sarcoidosis.

CONCLUSIONS: Our findings indicate that patients’ obstruction parameters (FEV1, FEV1%, FEF25-75, FEF25-75%) worsen, as long as FEF25-75/FVC rate decreases and it supports Green and his friends’ hypothesis (1) that ‘the changes on airway’s radius affect pulmonary functions independently lung parenchyma’. References
PC040
Comparison of Peak Expiratory Flow (PEF), Vital Capacity (VC) and FEV1/FVC values of Healthy People Considering Their Exercise Status
Sadettin Demirel, Fadil Özener
Department of Physiology, Uludağ University, Bursa, Turkey

AIM: Respiratory capacities of exercising people had been shown to be higher than those who do not. PEF, VC and FEV1/FVC are fundamental parameters to interpret pulmonary functions. The rising muscles’ O2 requirement during exercise forces cardiac, circulatory and respiratory systems to adapt to the changing metabolism. To look into respiratory adaptation, therefore, this study aimed to compare the expected PEF%, VC% and FEV1/FVC% of pulmonary function tests (PFT) of sedentary individuals and exercising ones.

METHODS: Thirty-four non-smoking healthy men and women volunteers (22-65 years of age) with similar physical characteristics volunteered after signing informed consent forms. PFT was performed with spirometer (Spirolab III; USA) according to ATS/ERS criteria. Data collection forms used to determine the participants exercise (walking, running, swimming, ball games and similar physical activities) frequency (never, 1-2 times a week, or every day). Expected PEF%, VC% and FEV1/FVC% values of participants who grouped according to their physical exercise frequency, were compared. SPSS 20.0 software was used for statistical analysis. p<0.05 was considered significant.

RESULTS: VC% of who exercise are higher than who do not; VC% of who exercise every day are higher than VC% of who exercise 1-2 times a week. Between the VC% of who exercise every day and who do not exercise, there was a significant difference statistically (p=0.018). Additionally, PEF values of who exercise are higher than who do not. However, based on the exercise frequency the difference for PEF values between groups was not significant. Similarly, any significant difference was not detected for FEV1/FVC parameter between groups.

CONCLUSIONS: Increasing muscle strength and physiological adaptations with physical activity can positively affect respiratory functions such as VC, FVC, FEV1 and PEF. Sedentary people having significantly lower PEF and VC values than those who exercise may benefit from exercising regularly. Starting physical training, therefore, may strengthen respiratory muscles and lead to improved dynamic and static pulmonary functions. This work was supported by Erciyes University Scientific Researcch Projects with TDK-2015-7586 registration number.

PC041
The Protective Role of Erdosteine Pre-treatment on Oleic Acid-induced Acute Lung Injury
Ayşen Erdem1, Esra Gedikli2, Nilgün Yersal3, Serkan Karaismaiãoğlu4, Meltem Tuncer1, Sevda Müftuoğlu5, Ersin Fadılıoğlu1
1Hacettepe University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
2Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey

AIM: Acute lung injury is a condition characterized by acute respiratory failure with high mortality rate. Erdosteine is a mucolytic agent with antioxidant and anti-inflammatory effects. It reduces the severity of injury by preventing neutrophil accumulation. It is particularly used in chronic lung diseases. However, there are few studies on its acute effects. Therefore, we aimed to investigate the protective effect of erdosteine pre-treatment on oleic acid (OA)-induced acute lung injury.

METHODS: 24 male Wistar albino rats were assigned into four groups: Control group received oral saline and one hour later 50 microliters of i.v. saline. OA group was administered oral saline and one hour later 50 microliters of i.v. OA. Erdosteine group received a single dose of erdosteine (150 mg/kg) orally and one hour later 50 microliters of i.v. OA. Tail vein was used for all i.v. injections. Four hours later following OA injection, rats were anesthetized. Lung tissues were excised to evaluate the tissue malondialdehyde and protein carbonyl levels, catalase activity, and histopathological changes. Data were analyzed by ANOVA followed by Tukey’s test.

RESULTS: OA administration increased lung weight (P<0.05), tissue malondialdehyde and protein carbonyl levels (P<0.05) and decreased catalase activity (P<0.01). Erdosteine pre-treatment ameliorated all these changes and OA-induced alveolar fluid, capillary congestion, interstitial edema, macrophage and neutrophil accumulation.

CONCLUSIONS: Erdosteine pre-treatment reduces OA-induced inflammation and oxidant stress and protects the lung tissue against acute lung injury. This work was supported by Hacettepe University Scientific Research Coordination Unit. Project Number: THD-2015-7586.
relationship between PFT and anthropometric measurements was determined by using correlation analysis (p<0.05).

CONCLUSIONS: This study conducted on healthy individuals showed that PFT was not associated with body type, but it was likely determined by measurements taken from the body. The significant difference was determined between expected and observed values and as a result, that was considered to the participants were not use their lung capacity sufficiently.

PC043
The Effects of Medical Ozone on Oxidative Stress in Lung Tissue of Diabetic Rats
Gülten Erken1, Fatma Emel Koçak2, Figen Aslan3, Hasan Şimşek4, Haydar Ali Erken1
1Balıkesir University, Faculty of Medicine, Department of Physiology, Balıkesir, Turkey
2Dumlupınar University, Faculty of Medicine, Department of Biochemistry Kütahya, Turkey
3Balıkesir University, Faculty of Medicine, Department of Medical Pathology, Balıkesir, Turkey
4Dumlupınar University, Faculty of Medicine, Department of Physiology, Kütahya, Turkey

AIM: Ozone is a trivalent form of oxygen. Medical ozone is a mixture of ozone and oxygen. Relationship between oxidative stress and diabetic complications has been shown previously. In this study, it was aimed to investigate the effects of medical ozone on oxidative stress/antioxidant balance in the lung tissue of diabetic rats. METHODS: 42 adult male Sprague-Dawley rats were randomly divided into 6 groups (n=7): Control (C), ozone (O), diabetic (D), ozone-treated diabetic (DO), insulin-treated diabetic (DI), and ozone- and insulin-treated diabetic (DOI). Diabetes was induced by a single injection of streptozotocin (60 mg/kg, i.p.), after which insulin was administered (3 IU, i.p., once a day) to the DI and DOI groups for 6 weeks, and 1.1 mg/kg (50 µg/ml, i.p., once a day) ozone was given to the O, DO, and DOI groups for 6 weeks. 6 weeks after the induction of diabetes, the oxidative stress tests (Total Oxidant Status, Total Antioxidant Status, Oxidative Stress Index) were made in lung tissue samples. Data were analysed using One-way ANOVA and post hoc Tukey tests. p<0.05 was considered statistically significant. RESULTS: Oxidative stress index values of D group were higher than the C, DO and DOI groups (p<0.01). There were no significant differences among the other groups in terms of oxidative stress index. CONCLUSIONS: In conclusion, medical ozone therapy alone or in combination with insulin can reduce the development of complications induced by oxidative stress in diabetic rats.

PC045
Non-invasive Determination of Physiological and Psychological Stress Level of Cortisol Hormone which Comes out of Football Match
Yıldırım Kayacan1, Ahmet Mor2, Tuba Tapan3, Cihat Uçar3, Sedat Yıldız3
1Ondokuz Mayıs University, Yaşar Doğu Faculty of Sports Science, Samsun, Turkey
2Sinop University, Faculty of Sports Sciences, Sinop, Turkey
3İnönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey

AIM: A high level of physiological and psychological endurance is required in sports branches performed under high pressure like football. The aim of this survey was to determine the stress level of athletes, via measuring the possible changes in spit as non-invasive, at match day's waking up level and pre match, through match and post match levels of football players.

METHODS: Male football players, from 18 to 27 age range (n=14), attended this survey. Spit samples were taken at regular season period in 3 different days (the day before match, match day and the day after match as waking up, 0, 30, 45 and 60th minutes) so as to determine waking up responses. Besides, the spit samples were taken for cortisol analyses in match day 30th and 15th minutes before competition, half time and after the game. The spit cortisol levels of athletes were analysed with ELISA method. The findings were analysed with Mann Whitney-U test and P<0.05 values were considered as significant.
RESULTS: It was appeared as a result of analyses that waking up responses of spit cortisol level increase in game day and decrease the day after. It is seen in the samples taken in match day, cortisol levels of athletes increase 30 minutes before competition and decrease in the samples taken in half time. It is determined that the samples taken the day before match and the day after match are similar to each other. No significant difference is appeared statistically considering the different days (P>0.05).

CONCLUSIONS: According to the findings, no significant difference was observed in the cortisol levels of waking up responses considering different days. Moreover, it was observed that athletes are able to control their stress levels particularly according to the samples taken match day.

PC046
The Relationship Between Some Respiratory Functions and Maximal Oxygen Consumption in Prepubescent Girl Football Players
Bircan Dokumacı, Hayriye Çakır Atabek
Department of Coach Training, Faculty of Sports Science, Anadolu University, Eskişehir, Turkey

AIM: The purpose of this study was to examine the relationship between various respiratory parameters and maximal oxygen consumption determined by YO-YO test in football trained girls.

METHODS: Twenty two girls who were engaged in football training (mean age: 12.95 ± 1.96 years; mean height: 151.20 ± 9.35 cm; mean weight: 42.99 ± 10.32 kg) volunteered to participate in the study. All subjects had trained at least 90 minutes per day, 4-5 days a week and were members of the same team that gained success at the national level. Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximum expiratory flow (PEF), forced expiratory flow rate medium (FEF25-75) and maximum voluntary ventilation (MVV) were measured to determine the respiratory function using the Spirolab III spirometry (Medical International Research). Maximal oxygen consumption (VO2max) were calculated using the “(Distance x 0.0084) +36.4” formula where the distance was determined by YO-YO test. The study was approved by the Anadolu University Ethical Committee.

RESULTS: The mean values of distance and the VO2max determined by YO-YO test were 420.00 ± 127.24 (m) and 39.98 ± 1.10 (L.min-1), respectively. Additionally, the mean values of FVC, FEV1, FEV1/FVC, PEF, FEF25-75 and MVV were 2.97 ± 0.60 (L), 2.42 ± 0.66 (L), 82.46 ± 14.19 (%), 3.68 ± 1.31 (L/sec), 2.77 ± 0.90 (L/sec) and 90.88 ± 25.08 (L/sec), respectively. A statistically significant relationship was determined between the FVC values and YO-YO test distance and VO2max (r = 0.662 and r = 0.583; p<0.01). Furthermore, a statistically significant relationship was determined between the MVV values and YO-YO test distance and VO2max (r = 0.520 and r = 0.500; p<0.05).

CONCLUSIONS: The results of the present study are in concordance with studies that put forth the positive effects of exercise programs on the respiratory functions of individuals who have not yet completed their developments. On the other hand, because of the FCV, FEV1 and PEF variables have been shown to be associated with age, height and weight, this effect may be a natural consequence of the growth.

PC047
Investigation of NRF-1 Genotypes and ACE Gene Polymorphism in Elite Athletes
Cemil Tümer1, Gülşay Gülboł Duran2, Yunus Yıldırım3, Enver Ahmet Demir3, Okan Tutuk3, Fathi Sefil4, Nizami Duran4
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
3School of Physical Education and Sports, Mustafa Kemal University, Hatay, Turkey
4Department of Medical Microbiology, Mustafa Kemal University, Hatay, Turkey

AIM: The present study aimed to investigate the genetic polymorphisms in Nuclear Respiratory Factor-1 (NRF-1) and angiotensin converting enzyme (ACE) in elite athletes who have diverse professions.

METHODS: 240 male athletes from diverse disciplines and 250 male controls were included in this study. Athletes were assigned into 4 groups (n=60 in each) as “football”, “basketball”, and “volleyball” which are endurance sports, and “wrestling” which is a strength sport. Blood samples were obtained and stored at -20 °C until the PCR analyses. Following the DNA extraction, NRF-1 and ACE gene regions were amplified by using the primers in the PCR. The acquired products were cleaved by the restriction enzymes MFE-1 and RSAand the polymorphisms for the mentioned genes were investigated by using the RFLP-PCR assay.

RESULTS: Of the athletes, ACEDD genotype was detected in 27.5% (66/240), ACEID genotype in 36.5% (88/240), whereas those three genotypes were found to be statistically lower than the athletes in the control group (p<0.05). In regard to the professions, a significant difference between footballers and wrestlers was determined for ACE DD and ACE ID genotypes (p<0.01) while no statistical significance was found between volleyball and basketball players for ACE gene polymorphism (p>0.05). We assume that this result may depend on that those two sports require higher physical performance than volleyball and basketball. Considering the NRF-1 gene polymorphism, a statistical significance was found in wrestlers, football and basketball players as compared to the controls (p<0.01).

CONCLUSIONS: Our results suggest that the distributions of the ACE and NRF-1 genotypes may be used as a genetic factor for electing athletes in early ages.
PC048
Effect of Mesenchymal Stem Cell Applications on the Rat Muscle Damage
Sevil Kestane¹, Bekir Çoksevim¹, Tuğba Ayverdi²
¹Department of Physiology, Erciyes University, Kayseri, Turkey
²Department of Stem Cell, Erciyes University, Kayseri, Turkey

AIM: The aim of the present study was to investigate the apoptotic effects of mesenchymal stem cell (MSCs) transplantation on the rat muscle tissue after exhaustive swimming exercise. METHODS: A total of 30 Sprague-Dawley male rats (250-280g/12 weeks) were used...They were divided randomly into five groups: Control (C), Mesenchymal Stem Cell (SC), Exercise (E), Mesenchymal Stem Cell and Exercise (ESC1) and Exercise and Mesenchymal Stem Cell (ESC2). The rats swam every day during one month until exhaustion, resting two days a week. The exhaust point will be accepted when the rats still remain 8-10 sec. Isotonic saline was given as placebo...were taken for apoptotic assay after sacrficiation of rats. The level of apoptosis was detected by using TUNEL method. The study was approved by Erciyes University Animal Experimentation Ethics Committee. Data were evaluated with ANOVA and Student T test in computer environment and the significnce level was taken as p<0.05.

RESULTS: MSC and swimming exercise applications were found to be substantially effective both morphologically and physiologically. The apoptotic cells number decreased significantly by MSC applications to tissue damage derived after exercise (p<0.05). Swimming rate of rats were increased significantly between two groups (p<0.05).

CONCLUSIONS: The MSC and swimming exercise applications increased the rats' swimming performance and cell damage induced by exhausted swimming exercise was significantly decreased. The common use of MSC in many clinical disciplines for treatment can contribute significantly to increase the athletic performance, to prevent sport's injuries and tissue damage induced by exercise. This study was supported by Erciyes University SRP (Project Number: TYL-2014-5270)

PC049
The Effects of Probiotic VSL#3, on Zonulin and Some Inflammatory and Oxidative Parameters in Rats Subjected to Moderate and Intensive Swimming Exercises
Hümeysa Ünsal, Cengiz Ünsal, Aykut Göktürk Üner, Ece Koç Yıldırım, Mehmet Ekici, Muhammet Balkaya, Ferda Belge Adnan Menderes University, Faculty of Veterinary Medicine, Department of Physiology, Aydın, Turkey

AIM: The disruption of intestinal barrier and concomitant inflammatory and oxidative processes may cause some gastrointestinal and upper respiratory tract complaints after intensive exercise periods, but moderate exercises improve immunity and oxidative balance. We tested that the effects of moderate and intensive swimming exercise on zonulin, an intestinal barrier marker, and some cytokines and oxidative parameters and also tested the effects of probiotic administration in both exercise regimens. METHODS: Twenty-eight rats were randomly divided into 4 equal groups: Control-C, Probiotic-P, Exercise-E, Probiotic+Exercise-PE. The rats in group E and PE underwent moderate swimming exercise 1 h/day, 5 days per week for 5 weeks. Following moderate swimming period, the same rats were subjected to intensive swimming exercise (1 h) with 150 min interval, 3 times/day for 5 days. Group C and group P were sedentary which were not subjected to swimming exercise. Probiotic VSL#3 was given to group P and group PE in tap water. At the end of the experiments, serum zonulin, TNF-α, IL-6, IL-10, TGF-β, MDA, and protein carbonyl levels were determined. Data were analysed with one-way ANOVA and post-hoc Duncan tests.

RESULTS: It was determined that serum zonulin and MDA levels decreased after moderate exercise in group E (P=0.01). TNF-α (P=0.003), IL-6 (P=0.022), TGF-β (P=0.04), and MDA (P=0.01) levels decreased, but the reduction in zonulin levels was not statistically significant in group PE.

CONCLUSIONS: Moderate swimming exercise improves intestinal barrier integrity and reduces oxidative stress. During this period, probiotic VSL#3 supplementation also improves inflammatory response. On the other hand, intensive exercise does not stimulate any inflammatory response and/or oxidative stress, but beneficial responses induced by moderate exercise disappeared possibly due to intense exercise-induced mild stress.

PC050
The Effect of Full Body Massage on the Excretion of Creatinine, Uric Acid and Microprotein Levels in Urine
Yalcın Kayaca¹, Yıldırım Kayacan², Yucel Makaraci²
¹Selçuk University Faculty of Sports Sciences, Konya, Turkey
²Ondokuz Mayıs University Yaşar Doğu Faculty of Sports Sciences, Samsun, Turkey

AIM: The purpose of this study was to determine the effect of massage on some biochemical parameters excreted by urine. METHODS: The study was carried out on with 42 attendees (21 study-21 control group). Both groups performed submaximal exercise, whereas the study group was given massage following the submaximal exercise. During the study group's massage, the control group was allowed for passive resting and was not given any massage. Urine samples were collected twice from the study group-both before and after the massage (following the 35 minutes of massaging and the waiting period)-and analyzed. Massage manipulations were done by efflage, friction, petrisoge, pression, deep friction and vibrations. Creatinine, uric acid and microproteins in urine were analysed using Olympos AU 5200 kit with strict adherence to the company's recommendations. In the statistical analysis within groups, we used paired t test, in between groups and independent samples t test was for comparison. There were no significant differences in the comparison of the experimental and control groups. Uric acid, creatinin and microproteins data were respectively analysed before and after massage. Data are presented as mg/dl, mean +/- SD.

RESULTS: The analysis results suggest that massage the treated experimental group received urine creatinine and uric acid value were detected increased significantly (P<0.01). There were no significant
PC051
Negative Effects of the Stimulant of Light on Performance and Elimination of this Effect Through Hypnotic Suggestion
Yalçın Kaya1, Yıldırım Kayacan2, Ahmet Selim Kaya1, Kadir Ekin1
1Selçuk University Faculty of Sports Sciences, Konya, Turkey
2Ondokuz Mayıs University Yaşar Doğu Faculty of Sports Sciences, Samsun, Turkey
3Kemerburgaz University, Student, İstanbul, Turkey

AIM: A great number of hallucinations can be generated to affect sports performance in humans by means of hypnotic suggestion. The light that comes to the eyes in critical moments may distract the sportsperson and affect their performance negatively. This study was carried out in order to investigate the physiological response caused by light stimulants of all the stimulants that negatively affect the sportsperson's performance on strength performance and to determine the effects of these hypnotic suggestions on those responses.

METHODS: This study was carried out on 28 volunteer national male athletes in the international standards. The subjects were made to use strength twice: In the first, the responses to direct light stimulants were determined during strength application. In the second, the same subjects were hypnotised and given the same stimulants, but before giving the stimulants, they were inculcated that “A light will come to your eyes. When you see it, you will feel quite stronger, be able to squeeze what you hold in your hand, and see that it will nearly be crushed and disappear.” Then the physical changes in the strength re-entered. The changes in the strength were determined as paw strength in TMR EST 1000 isometric muscle exercise measurement device. During strength application; 100, 150, and 200 W lights was sent as stimulant to the eyes from 50 cm distance with 450 angle. As a result, the changes caused by extra light stimulants affecting the strength during the suggestion with and without hypnosis were statistically evaluated. The findings were analysed with paired t test, and the values at the level of P<0.05 were considered significant.

RESULTS: It was determined that there was statistically significant difference between the strength values (100 W: p<0.001, 150 W: p<0.001, 200 W: p<0.001). CONCLUSIONS: It was found that the light that came to the eyes during strength application affected the performance negatively, but it could be eliminated with hypnotic suggestion; and even it affected the strength positively. Therefore, it is suggested that the hypnosis will be effective in performance loss caused by distraction in exercise forms related with competition and struggle.

PC052
Investigation of the Relationship Between the Reaction Time and Hand Grip Strength in Boxing
Yıldırım Kayacan1, Kazım Biyik1, Anzel Bahadır2, Vedat Erim1, Yücel Makaranç1, İzzet İslamoğlu1
1Ondokuz Mayıs University, Faculty of Yaşar Doğu Sports Science, Samsun, Turkey
2Düzce University, Faculty of Medicine, Department of Biophysics, Düzce, Turkey

AIM: Mostly, the motor ability of hands is often evaluated by measurements of hand grip strength. Reaction time is defined as the time between stimulus and response and the time is also the most important component taken as a criterion for sports performance because its one of the indicators of the neuromuscular performance. Thus, the purpose of the present study is to examine the relationship between reaction time with hand grip strength of the professional boxers.

METHODS: An elite-level struggling twenty-eight male boxers, between the ages of 16 and 20 years, participated in this study. The MOART (Lafayette USA) measurements equipment was used in reaction time measurements of the boxers. The measurements were carried out in two ways as simple and multiple visual reaction measurements. The hand grip strength measurements were performed by hand dynamometer grip-D (Takei, Japan) measuring force within the range of 0 to 100 kg. The findings from this study were analyzed by Pearson’s correlation test and P<0.05 values were considered statistically significant.

RESULT: It was determined that there were statistically positive correlations among the basic auditory reaction time with simple visual reaction time, multiple visual and auditory reaction times with simple visual reaction, left hand grip strength with right hand grip strength (P<0.05). There were no found significant relationships among reaction time parameters with the left and right hand grip strength (P> 0.05).

CONCLUSIONS: According to these findings, it has been observed that the visual and auditory reaction times have a coordinated structure with each other in boxers. In this respect, it has been determined that hand grip strength an indicator of the multiple body function is not related with reaction time. Results obtained from these parameters suggest the forms of training are effective in boxing which came into prominence of the time dependent struggle.

PC053
The Reliability of Ultrasonographic Measurement of Biceps Brachii Muscle Thickness and Stiffness
Ömer Batın Gözübüyükı, Bernard Tahribegoliı, Orkun Akkoç3, Mehmet Akman4, Bülent Bayraktar2
1Istanbul University, Istanbul Faculty of Medicine, Department of Sports Medicine, Medipol Başakşehir Football Club, İstanbul, Turkey
2Istanbul University, Istanbul Faculty of Medicine, Department of Sports Medicine, İstanbul University, Cerrahpaşa Faculty of Medicine, Public Health Department, İstanbul, Turkey
3Istanbul University, Faculty of Sports Science, Movement and Training Science Department, İstanbul, Turkey
4Medipol Başakşehir Football Club, İstanbul, Turkey

AIM: Estimation of muscle thickness from anthropometric measurements are not precise so further utilization of advanced methods...
PC054
The Relationship Between Incidence of Deformity in the Lower Limbs of Cases with Cerebral Palsy with Ambulation and without Ambulation

Özlem Kütlu Ishakoğlu1, Recep Dokuyucu1, Hatice Doğan1, Okan Tutuk1, Cemil Tümer1, Fatma Duman2
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2School of Physical Therapy and Rehabilitation, Mustafa Kemal University, Hatay, Turkey

AIM: Contractures, bone or articular deformities which accompany to cerebral palsy (CP) greatly restrict the movement of the child. Besides dynamic deformities and movement disorders are becoming more pronounced with ambulation and activities. Therefore, we aimed to compare the incidence of lower extremities deformity between CP patients with ambulation and CP patients without ambulation.

METHODS: This study was done on CP patients who have outpatient physiotherapy in Hatay Drops of Hope Special Education and Rehabilitation Center. 23 patients (12 females-11 males) whose average of ages are 18.9±6.24 were assigned to 2 groups as groupI: CP with ambulation(n=13); groupII: CP without ambulation(n=10). Information of patients as demographic information, clinical type of disease, disease involvement and level, lower limb deformities and presence of epilepsy were written down. Gross Motor Functional Classification System (GMFCS) and Functional Mobility Scale (FMS) were used for evaluation and posture analysis was done. The analyses were performed using SPSS-V19. The data were analyzed by chi-square test for correlation between categorical variables. Statistical significance was considered to be p<0.05.

RESULTS: In the study, knee flexion deformity was frequently observed (30.43% of CP with ambulant, 34.78% of CP without ambulation). But there was no significance between the incidence of knee flexion deformity and ambulation(p>0.05). There was no significant difference between ambulation and pes planus, pes cavus, equinovarus, equinovalgus, flexion in the knee, hallux valgus, hammer finger, tibial torsion, calcaneovalgus, calcaneoeginus and genu varum(p>0.05). However it was observed that genu valgum deformity was higher in CP with ambulant than CP without ambulation(p<0.05).

CONCLUSIONS: In patients which were evaluated in our study, the most common observed lower extremities deformity was the knee flexion deformity. The statistically insignificant results are associated with the limited number of cases. We think that this study may be concluded with definitive results when studies included more patients will perform.

PC055
Examination of PTX-3, IL-6 and CRP Levels in a Rat Model of Short and Long-Term Exercise

Melek Tunc Ata, Günfer Turgut, Mukaddes Mergen Dalyanoğlu, Sebahat Turgut
Pamukkale University, Physiology Department, Denizli, Turkey

AIM: Different types of exercise may occur damage in the muscles with different rate ratio in the cellular level. Muscle damage caused by exercise is determined by increasing rate of creatine kinase, myoglobin, and acute phase protein and interleukin levels in blood. The purpose of this study was to investigate the levels of PTX-3 (Pentraxin-3), IL-6 (interleukin-6) and CRP (C-Reactive Protein) in rats that underwent acute or chronic exercise.

METHODS: Thirty Wistar Albino male rats were grouped in to three equal groups as control, long-term and short-term. The short-term exercise group was performed 3 days/week, 10 min/day, 20 m/dk for a week. In long-term exercise groups was performed 7 days/week, 60 min/day for 4 weeks. At the end of the experiment, plasma PTX-3, IL-6 and CRP levels were measured by ELISA method. The results were evaluated with SPSS 17.0 software program by using Mann-Whitney U, Kruskal-Wallis, Wilcoxon and pearson correlation tests.

RESULTS: No significant difference between the levels of PTX-3, IL-6 and CRP was observed among the control, short and long-term exercise groups. The levels of IL-6 and CRP were not significantly different in short and long-term exercise groups. However, the level of PTX-3 was found higher in the long-term exercise group (3.04± 0.37) compared to the short-term exercise group (2.27± 0.58).

CONCLUSIONS: The level of PTX-3 increases in the muscle damage caused by long-term exercise compared to short-term exercise muscle damage. This increase shows that PTX-3 may have a protective role on muscle damage.
PC056
Comparing Accelerometer and International Physical Activity Questionnaire for Assessing Physical Activity Levels
Zeynep Altınkaya1, Ügür Dašt1, Figen Dašt2, Merve Türkğn1
1Mersin University, Department of Physiology, Mersin, Turkey
2Mersin University, Department of Biostatistics and Medical Informatics, Mersin, Turkey

AIM: Physical activity (PA) may contribute to the development of healthy lifestyle. The importance of increasing PA for preventing obesity and diseases is known in literature. Many methods are used for assessing PA levels. Two of them are triaxial accelerometer and questionnaire. In our study it was aimed to assess the PA levels of groups according to body mass index (BMI) and to investigate the consistency between accelerometer and International Physical Activity Questionnaire (IPAQ).

METHODS: 64 participants between 18-30 years of age were included in our study in terms of their BMI values as underweight, normal, overweight and obese. Before accelerometer was used by participants, device was programmed with the participant’s data and set to capture movements continuously in 1-minute intervals. Accelerometer was worn by the participant on the right or left hip which is used actively and then asked them to use consecutively 7 days through their daily life. After following 7 days, participants completed IPAQ. ANOVA, Tukey, LSD, Intraclass Correlation Coefficient and confidence interval were used for statistical analysis.

RESULTS: According to questionnaire’s data, mean value of light intensity time in obese group was significantly higher than normal group (p=0.031). In normal (p=0.034), overweight (p=0.006) and obese (p=0.023) groups, mean value of light intensity time obtained from accelerometer was significantly higher than underweight group. There was no consistency between light (ICC=0.04; [-0.2092]-[0.2784]), moderate (ICC=-0.04; [-0.3198]-[0.2425]) and vigorous (ICC=-0.01; [-0.5407]-[0.5240]) intensity time obtained from questionnaire and accelerometer.

CONCLUSIONS: According to accelerometer data, normal, overweight and obese individuals spent more time in light intensity activity than underweight ones. According to questionnaire, obese individuals spent more time in light intensity activity than normal individuals. Because of being objective method, accelerometer may be preferred for assessing PA levels rather than questionnaire.

PC057
Effects of Physical Activity on Metabolic and Cardiac Hemodynamic Alterations Related with Fructose-rich Diet
Pınar Tayfur1, Orkide Palabıyık2, Nurşen Uzun1, Necdet Süt1, Selma Arzu Vardar2
1Department of Physiology, Trakya University Medical Faculty, Edirne, Turkey
2Department of Biophysics, Trakya University Medical Faculty, Edirne, Turkey

AIM: Fructose-rich diet induces obesity and metabolic changes. This study was to investigate the effect of voluntary physical activity on metabolic, cardiac hemodynamic and inflammatory alterations result from the fructose-rich diet.

METHOIDS: Male rats were divided as control (C; n=7), fructose group which was fed 10% fructose to drinking water (F; n=7) and fructose-active group (FA; n=7) housed with a running wheel during 10 weeks. Daily fluid intake and body weight of rats were measured weekly. Serum glucose, triglycerides, total cholesterol, HDL, LDL were assessed using enzymatic method. Insulin, TNFα and IL6 levels were determined by ELISA method. Heart and liver weight was determined following the blood samples collection. Left ventricular developed pressure, maximum and minimum rate of change and heart rate were recorded by Langendorff apparatus. Kruskal-Wallis and Mann-Whitney U test were used for statistical analysis.

RESULTS: Weight gain between the first and 10th weeks were significantly lower for FA group (95.1±14.3 g), in comparison to F (109.0±6.6 g) and C (113.4±10.9 g) groups (p=0.04 and p=0.03). Liver weight was significantly higher for F group (11,8±1,0 g), in comparison to C (9,7±1,3 g) and FA (10,2±0,7g) groups (p=0.01 and p=0.01). Serum levels did not significantly differ between the groups. The maximum rate of change was found higher in FA group (2351.6±442.2) than F (1320±542.2) and C groups (1756±468.7) (p<0.01 and p<0.05).

CONCLUSIONS: The present study indicated that voluntary physical activity decreased weight gain and increased cardiac contractility without affecting metabolic and inflammatory parameters in rats which were fed with fructose-rich diet.

This study was supported by TÜBAP (2015/27).

PC058
Effects of Central FGF21 Infusion on TRH and TSH Levels
Ümit Yılmaz1, Suat Tekin1, Mehmet Demir1, Süleyman Sandal1, Yılmaz Çiğremiş2
1Inönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
2Inönü University, Faculty of Medicine, Department of Medical Biology and Genetics, Malatya, Turkey

AIM: Fibroblast growth factor 21 (FGF21) is an important endocrine hormone regulating multiple metabolic pathways. For all of these effects, FGF21 requires FGFR1c receptor and β-klotho co-receptor and they are expressed in the brain and especially pituitary gland and suprachiasmatic and paraventricular nucleus in the hypothalamus. Thyrotropin releasing hormone (TRH) is synthesized in the paraventricular nucleus of the hypothalamus and regulates the synthesis and bioactivity of thyroid stimulating hormone (TSH) in the pituitary gland. The aim of the study was to evaluate the effect of intracerebroventricular chronic FGF21 infusion on hypothalamic-TRH gene expression and serum TSH hormone levels.

METHOIDS: A total of 30 male rats were used in this study. They were divided randomly into three groups: FGF21, sham and control. FGF21 (0.72 µg/day) and vehicle (artificial cerebrospinal fluid) were infused intracerebroventricularly, in lateral ventricle of rats for 7 days, except control group. The all animals were sacrificed at the end of 7days, and blood and hypothalamus were collected from animals. Serum TSH levels were measured with ELISA and TRH gene expressions in hypothalamus were determined by Real-Time PCR.

RESULTS: FGF21 treatment group was compared to the control and sham group in terms of hypothalamic TRH gene expression and serum TSH hormone levels. TRH gene expression and serum TSH hormone levels of FGF21 group were significantly higher compared to control and sham groups (p<0.05).
CONCLUSIONS: These results indicate that intracerebroventricular FGF21 administration may play important roles in centrally regulation of thyroid hormones. This study was supported by the Inonu University-BAP (Project no: 2014/16).

PC059
The Effect of Visceral Fat Amount on Anxiety Scores in Different Age Groups: The Role of Gender
Hilal Korkmaz1, Atakan Savrun1, Deniz Önal1, Bilge Pehlivanoglu1
1Hacettepe University, Department of Physiology, Ankara, Turkey
2Dr. Nafiz Körez Sincan Hospital, Emergency Medicine Department, Ankara, Turkey

AIM: It is known that increased body weight and obesity especially visceral fat amount becomes a public health problem and is associated with various diseases. The incidence of anxiety and related diseases are increasing and regulated by body weight. Based on these data, we aimed to investigate the relationship of body weight and anxiety in men and women between 18-60 years of age.

METHODS: 220 women, 160 men volunteers participated in this study (n=380). The ages, heights, weights and waist circumference of these individuals were recorded and anxiety scores were calculated out of the “Beck Anxiety Inventory” applied. The data was grouped on the basis of gender, age-group, waist circumference and analyzed with SPSS 22.0 software. p<0.05 considered statistically significant.

RESULTS: The comparison according to age groups (18-29, 30-49, 50-60) and waist circumference (102 cm in men, 80 cm in women) revealed higher anxiety scores in women (10.8±5.0) with more visceral fat than corresponding men (7.6±5.0). All the other comparisons did not show any significant differences between groups for age, gender or waist circumference.

CONCLUSIONS: The results obtained in this study, pointing out the difference between women and men in 30-49 age-group may help to explain the higher incidence of some gender dependent diseases e.g. autoinflammatory conditions. The observation of higher anxiety especially in wider waist circumference group also supports the role of body weight in this difference. But the insignificant difference in other groups makes us to consider to repeat the study with other scales. It will be helpful to use state and trait inventories in further studies.

PC060
Protective Effect of 1,25 dihydroxyvitamin D3 on HCI/Ethanol-induced Gastric Injury in Rats
Hasan Hüseyin Şahin, İnci Alicant
Department of Physiology, Marmara University School of Medicine, İstanbul, Turkey

AIM: Beyond its role in calcium and phosphate homeostasis, calcitriol - active form of 1,25 dihydroxyvitamin D3 (vitD) - is known as an important modulator of cellular proliferation, differentiation, inflammation, and immune systems. The aim of study was to determine if vitamin D3 has protective effect against tissue injury in rat model of HCl/ethanol-induced gastric ulcer.

METHODS: Sprague-Dawley rats of both sexes (250-300 g; n=8) were fasted for 24 hours. Gastric injury was induced by acidified ethanol solution (0.3 M HCl/60% ethanol) per os (0.2 ml). Control group received saline (0.2 ml, per os). Ulcer groups were treated with VitD (0.25 μg/kg; intraperitoneally) for 14 days alone or along with nitric oxide synthase inhibitor L-NAME, the inhibitor of sulfhydryl groups N-ethylmaleimide (NEM), ATP-sensitive K+ channel blocker glibenclamide or cyclooxygenase inhibitor indomethacin (Indo). The rats underwent ulcer induction and de-capitated 60 min later. The stomachs were examined macroscopically. Stomachs and trunk blood were sampled for biochemical assays. Values are means±SEM, compared using ANOVA and Student’s t-tests.

RESULTS: Gastric macroscopic lesion score of untreated ulcer group (33.13±5.09) was decreased by pretreatment with VitD (19.00±4.34; p<0.05) and this effect was augmented by L-NAME (0.11±0.05; p<0.01) and attenuated by Indo (45.33±6.04; p<0.01) given along with VitD. Ulcer group revealed increased gastric malondialdehyde (MDA) (15.20±1.64 nmol/g; p<0.001), reduced endogenous antioxidant glutathione (GSH) levels (0.69±0.09 μmol/g; p<0.05) and increased myeloperoxidase (MPO) activity (20.96±4.86 U/g; p<0.001) in comparison to control. Changes in these parameters were effectively suppressed by VitD (7.63±3.11 nmol/g; p<0.01, 1.33±0.16 μmol/g; p<0.01 and 8.82±0.41; p<0.001 U/g, respectively). Indo reversed effect of VitD on MDA, GSH and MPO levels (p=0.05-p<0.001) whilst NEM had slighter effect on gastric MDA and MPO levels achieved by VitD (p=0.05-p<0.001); but no difference in catalase and SOD.

CONCLUSIONS: VitD protected gastric tissue against oxidant injury via mechanisms possibly involving cyclooxygenase system.
RESULTS: Concentrations of norepinephrine and its metabolite, dihydroxyphenylglycol were not different compared to control in saline and glucose treatment groups. Dopamine concentrations did not change in physiologic saline groups and glucose treatment hunger group, while there was a slight increase in normal feeding group after glucose administration (Values as mean±SEM in control: 0.16±0.02 and after application 0.26±0.07 and 0.27±0.08, respectively). DOPAC (dopamine metabolite) concentration was not differ in glucose administered hunger group, whereas its’ levels after glucose treatment in normal group were statistically higher than control (p<0.05, control values as mean±SEM: 0.69±0.07 and after glucose treatment: 1.76±0.48, 1.54±0.48 and 1.73±0.67, respectively).

CONCLUSION: These results demonstrate that dopaminergic neurotransmission in VMN may change due to blood glucose concentration. Hyperglycaemia after feeding may contribute to satiety sense by increasing dopamine concentration in VMN. Noradrenergic innervation in VMN does not seem to be affected by blood glucose level.

PC062
In vitro Effects of Linuron on Luteal Progesterone Synthesis
Fatih Sultan Bilmen1, Şevket Arikan1, Özkan Şimşek1, Nurşul Atmaca2, Hakan Kalender2, Dinç Eşsiz3, Ruhi Kabakçı1
1Kirikkale University, Veterinary Faculty, Department of Physiology, Kirikkale, Turkey
2Kirikkale University, Veterinary Faculty, Department of Obstetric and Gynecology, Kirikkale, Turkey
3Kirikkale University, Veterinary Faculty, Department of Pharmacology and Toxicology, Kirikkale, Turkey

Aim: Linuron is a widely used herbicide in agriculture which humans and animals have a risk of exposure to. The aim of this study was to assess the invitro effects of linuron on luteal progesterone synthesis.

Methods: Midluteal bovine ovaries were used as luteal cell sources. The cells were dissociated in oxygenated culture medium containing collagenase, DNase, bovine serum albumin and antibiotic solution by shaking at 37°C. The cells were incubated without treatment for the first 24 h. Subsequently, the cells were cultured with serum free media containing Linuron (0 µM, 50 µM, 100 µM and 200 µM) for the remaining 96 h. After starting the treatment, spent medium was replaced with fresh medium every 48 h. Progesterone concentrations in the culture media were measured via radioimmunoassay (RIA) method. Statistical analysis was assessed with ANOVA followed by Duncan test for multiple comparison.

Results: Treatment of the cells with 100 µM and 200 µM linuron resulted in significant reduction (P<0.01) on progesterone production both on days 3 and 5. On the contrary, treatment of cells with 50 µM Linuron did not affected luteal progesterone synthesis throughout 96 h incubation. Treatment of cells with 200 µM Linuron resulted in 41% and 45% inhibition in progesterone production on day 3 and 5 respectively.

Conclusions: Conclusively, certain doses of Linuron have adverse effects on the invitro synthesis of luteal progesterone. Reproductive health is important for animal breeding and livestock economy. Present results indicate that maximum precaution must be taken to avoid exposure of Linuron to living organism. This research was supported by Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: TOVAG-213O174).
PC064
Effects of Endocrine Disrupting Compounds on Fetal Development During Pregnancy
Leyla T. Sener1, Gürcan Albeniz2, Yasin Çelikok3, Ferdane Dansman4, Müfitte A Ahabbi3, İşıl Albeniz4
1Department of Biophysics, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
2Department of General Surgery, Istanbul University Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
3Department of Biophysics, Yeni Yüzyıl University, Istanbul, Turkey
4Department of Physiology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey

AIM: Chemicals that inhibit normal function of the endocrine system are generally known as endocrine disrupting compounds. Most recent studies have shown that endocrine disrupting compounds affect mammals during fetal and post-natal life periods more than in adulthood. The aim of the present study was to investigate the effects of exposure to rats during pregnancy to various dosages of diethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DBP) on fetal skeletal development.

METHODS: Istanbul University animal experiments ethics committee approval was obtained. Pregnant Sprague-Dawley rats (n=4) used in the study of lipid application in control-prenatal, low dose and high dose prenatal groups (3 groups). Between the 6th and 19th days of pregnancy, 61 µg/kg/day and 61 mg/kg/day DEHP and DBP were administered to the rats by gavage feeding each day at the same time. The rats were anesthetized using ether on the 20th day of pregnancy and cervical dislocation was performed. The X-ray images of the fetuses were taken on 20th day of pregnancy. X-rays were performed at 42 kVp, 160 mA, and 0.01 s rotation.

RESULTS: The X-ray images revealed that bone density levels were low in the group exposed to DEHP and DBP in high and low dose groups compared with in-lipid application control-prenatal group. The bone and embryonic development was not complete. Results of the statistical analysis demonstrated that there was an advanced level of difference between the control and the groups (p<0.001).

CONCLUSIONS: We investigated the skeletal development of fetuses removed from pregnant rats. We found that the frequently used phthalates DEHP and DBP delayed the bone development. In addition, the present study showed that a low dose of 61 µg/kg/day DEHP and DBP was effective on the skeletal system of fetuses.

PC065
The Effects of Tumor Necrosis Factor Alpha Inhibition on Apoptotic Cell Death In B-Cell with Type-I Diabetes-Induced by Streptozotocin
Celal Güven1, Eylem Taşkın Güven2, Pelin Yazgan3, Aylin Rezvani3, Sayad Kocahan4
1Department of Biophysics, Faculty of Medicine, University of Adiyaman, Adiyaman, Turkey
2Department of Physiotherapy and Rehabilitation, Istanbul Bilim University School of Health Sciences, Istanbul, Turkey
3Department of Physical Medicine and Rehabilitation, Istanbul Yeniyüzyıl University Medical Faculty, Istanbul, Turkey
4Department of Physical Medicine and Rehabilitation, Bezmî Alem University Medical Faculty, Istanbul, Turkey

AIM: Patients with rheumatoid arthritis (RA) suffer from co-morbidities because inflammation is important for the development of some disease, for example, diabetes mellitus. Type 1 diabetes is one of the most common chronic autoimmune diseases characterized by loss of insulin-producing beta cells. Tumor necrosis factor alpha (TNF-α) promotes the inflammation response and apoptotic cell death. The approach of targeting TNF-α has considerably improved the success in the treatment of RA. TNF inhibitors may improve the glycemic control in patients with concomitant RA and diabetes mellitus. The aim of the study was to investigate whether TNF-α inhibition by adalimumab, etanercept or golimumab can be achieved to modulate beta cell loss by apoptosis or not.

METHODS: The current study was used to human β-cell line. Total of 5 groups were created as control (C) Diabetes (D), Diabetes+Adalimumab (10 µg/ml; DA), Diabetes+Etanercept (5 µg/ml; DE), Diabetes+Golimumab (10 µg/ml; DG). After diabetes was created by using streptozotocin (20 mM), TNF-α inhibitors were incubated for 24 h. Protein was isolated to measure some apoptotic proteins for Western blot analysis.

RESULTS: Diabetes gave rise to increasing energetic stress by diminishing AMP-kinase (AMPK) protein level and initiate to apoptosis by alteration of p53 protein level, resulting in Smac/DIABLO efflux from mitochondria to cytosol that occurs downstream of cytochrome c release. Pharmacological inhibition of TNF-α could modulate the energetic stress in a beta cell by increasing AMPK protein level in DA, DE, DG groups. Hence, all TNF-α inhibition groups restored to cell loss through apoptosis by rising of p53 protein level compared to the diabetic group.

CONCLUSIONS: Although type-1 diabetes leads to losing β-cell by apoptosis, resulting from inflammation response, TNF-α inhibitions might prevent β-cell by decreasing apoptotic proteins.

PC066
Thymoquinone Reduces the Inflammatory Response in Adipocytes
Mehmet Berköz1, Oruc Allahverdiyev2, Metin Yıldırım3, Serap Yalı4
1Yüzüncü Yıl University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Van, Turkey
2Yüzüncü Yıl University, Faculty of Pharmacy, Department of Pharmacology, Van, Turkey
3Mersin University, Faculty of Pharmacy, Department of Biochemistry, Mersin, Turkey

AIM: In response to inflammatory signals, adipocytes have been shown to induce the expression of several acute phase proteins and mediators of inflammation. Thymoquinone, the main bioactive component of the black seed oil has been reported to have anti-inflammatory effects. The aim of this study was to investigate the modulation of inflammation by thymoquinone in vitro using 3T3-L1 mouse adipocytes.

METHODS: 3T3-L1 adipocytes were pretreated with thymoquinone one hour before lipopolysaccharide (LPS) treatment. The gene expression of tumour necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein 1 (MCP-1), leptin, interleukin-1β (IL-1β), IL-6 and IL-10 were measured by qRT-PCR. All data are expressed as means ± SD from three independent experiments. SPSS v.10 was used for statistical analyses. Differences between the mean values of multiple groups were analyzed by one-way analysis of variance followed by Tukey’s post hoc test. Statistical significance was considered to be p<0.05.
RESULTS: Our data demonstrated that thymoquinone significantly reduced the expression of TNF-α, IL-1β, IL-6, MCP-1 and leptin (p<0.05), as well as suppressed the overexpression of PAF-1 induced by LPS (p<0.05) but thymoquinone treatment didn’t show any effect on IL-10 expression in 3T3-L1 cell line (p>0.05).

CONCLUSIONS: Our findings suggested that thymoquinone counteracted the stimulatory effect of LPS on expression of pro-inflammatory adipokines, implying a potential anti-inflammatory effect during the inflammatory process in adipocytes.

PC067
Investigation of Anti-cancer Properties of 2,2,4,4-Tetra (4’-oxy-substituted-chalcone)-6,6-diphenylcyclotriphosphazene Derivatives Against Human Ovarian (A2780) and Prostate (PC-3) Cancer Cell Lines
Çiğdem Tekin1, Kenan Koran2, Suat Tekin3, Süleyman Sandal3, Ahmet Orhan Gorgüli2
1Department of Public Health, Faculty of Medicine, İnönü University, Malatya, Turkey
2Department of Chemistry, Faculty of Science, Firat University, Elazığ, Turkey
3Department of Physiology, Faculty of Medicine, İnönü University, Malatya, Turkey

Aim: Phosphazenes, which consist of repeating units of –P=N– in their structure, are compounds having linear or cyclic structure connected to the two organic or inorganic side groups (R) in each phosphorus atom. Due to the reactivity of –Cl atom in their structure, the type of organic or inorganic group bonded as side groups to the phosphazene compounds changes physical, biological and chemical properties of these compounds. Recently, phosphazenes derivatives were found to be effective on various cancer cells. In this study, the chalcone-phosphazene compounds bearing –CH3/OCH3/Cl/F side groups at ortho position were conducted to investigate the effects on human ovarian (A2780) and prostate (PC-3) cancer cell lines.

Methods: In the present study, 2,2,4,4-tetra(4’-oxy-substituted-kalkon)-6,6-diphenylcyclotriphosphazene compounds (chemical formula: compound 1;2,2,4,4-tetra(4’-oxy-2-methylchalcone)-6,6-diphenylcyclotriphosphazene (C76H62O12N3P3), compound 2; 2,2,4,4-tetra(4’-oxy-2-methoxychalcone)-6,6-diphenylcyclotriphosphazene (C76H62O12N3P3), compound 3; 2,2,4,4-tetra(4’-oxy-2-chlorochalcone)-6,6-diphenylcyclotriphosphazene (C72H50O8Cl4N3P3), compound 4; 2,2,4,4-tetra(4’-oxy-2-fluorochalcone)-6,6-diphenylcyclotriphosphazene (C72H50O8F4N3P3)) were synthesized. Anti-tumor properties of these chalcone-phosphazene compounds in the different concentrations (1, 5, 25, 50 and 100 µM) were determined on human ovarian (A2780) and prostate (PC-3) cancer cell lines.

Conclusions: Is there any relationship between obesity and FGF21?
Ümit Yılmaz, Suat Tekin, Mehmet Demir, Süleyman Sandal
İnönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey

Aim: Fibroblast growth factor 21 (FGF21), a 208 amino acid protein, is predominantly expressed in liver and also expressed in multiple metabolic tissues such as skeletal muscle, adipose tissue and pancreas and plays very important roles in glucose uptake and oxida-
Determination of Anticancer and Antimicrobial Properties of Alcea calvertii

Serhat Keser1, Suat Tekin2, Ömer Kaygılı3, Fatma Keser1, Süleyman Sandal2, Ömer Kaygılı3, Fatma Keser1, Suleyman Sandal2
1Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Turkey
2Department of Physiology, Faculty of Medicine, İnönü University, Malatya, Turkey
3Department of Chemistry, Faculty of Science, Fırat University, Malatya, Turkey
4Department of Biology Education, Faculty of Education, Fırat University, Elazığ, Turkey
5Department of Nutrition and Dietetics, Faculty of Health Sciences, Fırat University, Elazığ, Turkey
6Department of Biology, Faculty of Science, Fırat University, Elazığ, Turkey

AIM: For long years, the plant derived drugs are used for anticancer and antimicrobial purposes due to have low cost and less side effects by the majority of the World's instead of synthetic drugs. Alcea calvertii L. is belonging to Malvaceae family, and it is an endemic perennial plant. Previous studies have shown that Alcea species have anti-viral, anti-inflammatory, diuretic and antimicrobial properties. In this study, it was investigated that the antimicrobial and anticancer properties of endemic A. calvertii flowers aqueous, ethanol, methanol and acetone extracts.

METHODS: The anticancer activities of extracts in different concentrations were determined on the prostate (LNCaP), colon (HCT-116) and breast (MCF-7) cancer cell lines by using MTT assay. The antimicrobial properties of extracts were determined against different microorganisms may caused infection, such as Bacillus megaterium, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Klebsiella pneumonia, Proteus vulgaris, Staphylococcus aureus bacteria and Candidia albicans yeast by using inhibition zone method.

RESULTS: It was observed that A. calvertii aqueous, ethanol, methanol and acetone extracts were caused a significantly reduction on the cell viability of prostate (LNCaP), colon (HCT-116) and breast (MCF-7) cancer cell lines when compared to control values (p<0.001). A. calvertii methanol extracts have been shown higher antimicrobial activity than standard antibiotic on E. coli, B. subtilis, L. monocytogenes and C. albicans microorganisms.

CONCLUSIONS: Consequently, A. calvertii aqueous, ethanol, methanol and acetone extracts were significantly reduced the cell viability of prostate (LNCaP), colon (HCT-116) and breast (MCF-7) cancer cells, and A. calvertii methanol extract has potent antimicrobial activity.

This study was supported by TUBITAK (Project number: 114Z124)
PC072
Salivary Cortisol Levels in Hungry Fasting Individuals at the First Week of Ramadan
Tuba Özgöçer, Cihat Uçar, Hilal Yıldırım, Pınar Çakan, Özlem Barutçu, Sedat Yıldız
İnönü University, Medical School, Department of Physiology, Malatya, Turkey

AIM: Fasting from sunrise to sunset in the month of Ramadan is a Muslim prayer. A breakfast is eaten before the sunrise and nothing is drunk or eaten until the dinner at the sunset. Effect of fasting on circadian rhythm of the stress axis, namely hypothalamo-pituitary-adrenal axis, is not known. Therefore the aim of the current study was to assess the changes in salivary cortisol levels in the fasting individuals in the first week of the Ramadan.

METHODS: Women (n=51) and men (n=39) (age= 18-50) fasting in the first week of Ramadan participated to this study. Saliva samples were collected before morning breakfast (about 02.00 am, respectively), and at before and after dinner (about 19.00 pm and 21.00 pm, respectively). Additionally, another saliva sample was taken at 60 min following awakening (approx. 09.00 am). Some participants did not sleep before breakfasts while all slept after the breakfast. Mood scales were filled and dietary preferences were recorded. Cortisol were analyzed by ELISA method. Non-parametric tests were used to statistical analyze the non-normally distributed cortisol data.

RESULTS: Gender did not affect cortisol concentrations (p>0.05). Cortisol levels at morning following awakening (136.0±64.1) was highest than all other times (p<0.005). Moreover, cortisol levels was higher at breakfast (116.4±59.2) than before (17.0±2.2) and after dinner (79.3±44.9) time (p<0.005). Cortisol levels at breakfast were higher in participants (n=52) who slept before breakfast (p<0.05). However, cortisol concentration in the following morning was not different between the participants who slept or did not sleep in the preceding night (p>0.05). Cortisol levels at all times were higher in the participants (n=18) preferring high sugar food (p<0.005).

CONCLUSIONS: Fasting for approximately 16 hours did not disrupt the normal profile of circadian cortisol secretion during the 1st week of Ramadan. Sleeping in the preceding night does not affect morning cortisol levels. Preferring high sugar foods might be due to homeostatic effects of cortisol on blood glucose levels.

PC074
The Effect of Stress and Exercise on Behaviour
Emine Kaçar1, Zübeyde Ercan1, Fathı Tan1, Gökkhan Zorlu2, Özgür Bulmuş1, İhsan Serhatlioğlu2, Ayşe Sümeýra Dereili3, Haluk Keleştimur1
1Fırat University Faculty of Medicine, Department of Physiology, Elazığ, Turkey
2Fırat University Faculty of Medicine, Department of Biophysics, Elazığ, Turkey
3Zirve University Faculty of Medicine, Gaziantep, Turkey

AIM: While stress is known to have a negative effect on the brain and exercise has positive effects. The aim of this study was to observe the effect of stress and exercise on animal behaviour. METHODS: A total of 40 adult male Sprague-Dawley rats were used and the study lasted 45 days. Rats underwent sexual behaviour test and the ones who showed 2-4 ejaculations a day were included in the study. Animals were separated in 4 groups according their weight: control, exercise, stress+exercise, stress. Animals in the stress group were exposed to stress in a cabin where their movement was restricted. Stress exposure was increased periodically (starting at 1 hour to a maximum of 3 hours). On the other hand, animals in the exercise group underwent exercise on a treadmill. The speed of the exercise was increased from 15 m/min up to 25 m/min. The duration of the exercise was increased from 15 min to 50 min. In the stress+exercise group animals were exposed to both stress and exercise. 3 days interval from the twentieth day with applied behavioural tests for animals of all groups.

RESULTS: According to forced-swimming depression test, floating (immobility) time increased significantly in animals under stress. Tail-suspension tests revealed that exercise significantly decreases stress-related depression. Light/dark transition test was used to determine anxiety in animals and showed that in animals under stress, the time spent under the dark was significantly different to their preference to stay under light. In the open-area test, that indirectly measures locomotor activity, all parameters except for defecation, disclosed significantly important differences between the groups.

CONCLUSIONS: It can be concluded that stress, created as a result of chronic physical restriction, leads to depression. Exercise has a very important role in decreasing stress-related depressive effect in animals exposed to stress.

PC073
Examining the Effect of Stress-induced Increases in Cortisol Levels on the Dynamic Balance Scores of Medical Students
Deniz Şengül1, Cihat Uçar2, Mahmut Çavuş1, Furkan Çevirgen1, Davut Özbek3, Sedat Yıldız2
1İnönü University, Faculty of Medicine, Department of Anatomy, Malatya, Turkey
2İnönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
3Zirve University Faculty of Medicine, Gaziantep, Turkey

AIM: Test anxiety is the main factor that hampers the achievement of students. Stress affects the hypothalamic-pituitary-adrenal (HPA) axis, leading to an increase in the cortisol level. This study aims to examine the effect of stress-induced increases in cortisol levels on the dynamic balance scores of medical students.

METHODS: This study was conducted with the participation of 107 students from Faculty of Medicine. To examine the dynamic balance of the students, the Star Excursion Balance Test (SEBT) was performed to test both right and left feet of the students during the period of relax a month before the committee exams. Saliva samples were taken and the State-Trait Anxiety Inventory (STAI-1) was performed to analyze the stress levels. The same tests were repeated on the day of the committee exam. Saliva samples were obtained and STAI-1 was performed again. Cortisol concentrations in the saliva samples were analyzed.

RESULTS: The statistical analysis shows that there is a statistically significant relationship between the results obtained from the analysis of cortisol as a stress indicator and the dynamic balance test conducted during the period of relax and the results of the dynamic balance test performed during the period of stress (p<0.05). The correlation analysis shows that balance scores decreased with increased level of stress.

CONCLUSIONS: The present study has shown that stress-induced increases in cortisol levels have a negative effect on the dynamic balance scores of the medical students.
PC075
Role of Centrally Injected Leptin on Prostaglandin Release from Posterior Hypothalamus and Nucleus Tractus Solitarius
Burçin Altınbaş1, Murat Yalçın1, Begüm Aydın1,
Duygu Udom Küçüksen2, Gökçen Güvenç3, Nasir Niaz1, Leman Gizem İlihan1
1Department of Physiology, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
2Department of Biochemistry, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey

AIM: Leptinergic and prostaglandinergic systems, located within central nervous system, possess neuromodulatory activity. Both these systems play their role in the regulation of cardiovascular system within the CNS. Recently, the experiment performed in our laboratory on leptin depicted that leptin is implicated in the regulation of cardiovascular system through the mediation of central histaminergic system. In the recent past, another experiment performed on arachidonic acid which is a component of prostaglandinergic system demonstrated that there is an interaction between central arachidonic acid and central cholinergic nervous system in the brain. The fundamental purpose of this study was to show the association between centrally injected leptin and extracellular total prostaglandin (T-PG) concentration in posterior hypothalamus (PH) and nucleus of tractus solitarius (NTS) and its involvement in the regulation cardiovascular system.

METHODS: 20 male Spraque-Dawley rats were utilized in the experiment. Microdialysis analysis was employed for measuring extracellular concentration of T-PG in PH and NTS. A dose of 20 µg of leptin was administered intracerebroventricularly. ELISA method was utilized to measure T-PG in the microdialyze samples. Data are given as mean ± SEM of five measurements. Statistical analysis was performed using RM-ANOVA with posthoc Bonferroni test. p<0.05 was considered significant.

RESULTS: Following intracerebroventricular administration and comparison of the test groups with salt water control groups, Leptin induced a decline in the concentration of T-PG by 26% / 10% at 20th minute, 19% / 15% at 40th minute and 29% / 3% at 60th minute in PH and NTS, respectively.

CONCLUSIONS: In conclusion, prostaglandinergic system found in the PH and NTS, important centres for cardiovascular regulation, could play a role as a mediator in the central leptinergic system based control of cardiovascular system.

PC076
Decreased Sleep Duration Reduces Hypothalamo-pituitary-adrenal Axis Activity Without Affecting Autonomic Nervous System
Cihat Uçar1, Tuba Özgöçer1, Sedat Yıldız1
Department of Physiology, Faculty of Medicine, İnönü University, Malatya, Turkey

AIM: Changes in sleep duration have been reported to affect hypothalamic-pituitary-adrenal axis (HPA) and the autonomic nervous system (ANS) activities. However, the number of studies on the effect of sleep duration on HPA activity is very scarce and also, there are no studies on the effects of sleep duration on ANS activity. Aim of the current study, was, therefore, to examine effects of changes in sleep duration on cortisol awakening response as indicator of HPA and heart rate variability (HRV) as indicator of ANS activity.

METHODS: In this study, two groups were formed consisting of second year medical students. Sleep duration the first group (n=27) was reduced (sleep at 02:00 p.m., waking up at 06:30 a.m.), the second group (n=25) was allowed to sleep in normal duration (sleep at 11:00 p.m., waking up at 06:30 a.m.). In each day, sleep dairies were filled; salivary samples were taken at 0, 15, 30 and 60 min post-awakening for measurement of CAR; and electrocardiogram was recorded for 5 min for determination of HRV. Cortisol concentrations were measured in the salivary samples by enzyme immunoassay. Mann-Whitney U test was used for the data distributed non-normally and p<0.05 denoted statistical significance.

RESULTS: Restricted sleep duration decreased cortisol concentrations 15 and 30 minutes following awakening (p<0.05). Changes in sleep duration did not affect time- and frequency-domain parameters of HRV (p>0.05). Daily awakening problems score were higher but daily disturbed sleep score was lower in the restricted sleep (p<0.05).

CONCLUSIONS: Sleep restriction decreases cortisol concentration and this, in turn, is associated with awakening problems. On the other hand, autonomic nervous activity as measured by heart rate variability was not affected by sleep restriction. This study was supported by İnönü University BAP (Project #2015-96)
tion in some regions and less separated lamellae. In alendronate+melatonin-treated group, quite regular, mostly calcified trabecular bones were present, while trabecular thickness was similar to sham-operated group. Moderate decreases in calcified areas and in trabecular thickness, increased decalcified areas with severe separation of lamellae in trabecular bones were observed in melatonin + luzindole-treated group, while these were milder in melatonin+ luzindole+alendronate-treated group. TUNEL analysis revealed significant decreases in both alendronate-treated and melatonin-treated groups.

CONCLUSIONS: Similar to alendronate, melatonin has direct anti-apoptotic and bone-mass-preserving effects without any additive action. The stimulatory effect of melatonin on trabecular thickness appears to be receptor-mediated.

Supported by Marmara University Research Fund.

PC078
The Molecular Mechanism of Squalen on Cisplatin-induced Nefrotoxicity
Ayşe Arzu Sayın Şakul1, Mehmet Ozansoy2, Süle Ayla3, Mehmet Yalçın Günel4, Yasemin Yozgat5, Rümeysa Kazancıoğlu6, Kazım Şahin7, İlkcan Kılıç2
1Medipol University School of Medicine, Department of Medical Pharmacology, İstanbul, Turkey
2Medipol University School of Medicine, Department of Physiology, İstanbul, Turkey
3Medipol University School of Medicine, Department of Histology and Embryology, İstanbul, Turkey
4Medipol University- REMER, İstanbul, Turkey
5Bezmi Alem University School of Medicine Department of Internal Medicine, İstanbul, Turkey
6Fırat University School of Veterinary Medicine, Department of Animal Nutrition, Elazığ, Turkey
7Medipol University School of Medicine Department of Medical Biology, İstanbul, Turkey

AIM: Cisplatin, a platinum compound, is used as a first-line agent against various forms of solid cancers. The clinical use of Cisplatin is highly restricted, because of its nephrotoxicity. Nephrotoxicity is an important adverse effect of Cisplatin therapy, which involves increased oxidative stress, inflammation, apoptosis, and activation of the mitogen-activated protein kinase (MAPK) pathway. Squalene is a natural organic compound originally obtained from shark liver oil. In this study, the molecular effects of Squalen against Cisplatin-induced oxidative stress and nephrotoxicity was investigated in mice.

METHODS: Studies were performed on male BALB/c mice (n=7).
Group 1 was administered a single dose of Cisplatin i.p. (7 mg/kg, dissolved in 0.9% SF), Group 2 was administered a single dose SF i.p (7 mg/kg), Group 3 was administered corn oil by orogastric gavage, (10 days), Group 4 was administered 100 mg/kg Squalen by orogastric gavage, (10 days) and Group 5 was administered both a single dose and 100 mg/kg Squalen by orogastric gavage (10 days). After 10 days, the experiments were terminated. Oxidative stress parameters were measured colorimetrically. Interferon-gamma, IL6, IL10, IL17 and TNF-alpha were evaluated by luminometric analysis. The differences in the levels of Akt, p-Akt, GSK-3B, p-GSK-3B, mTOR, p-mTOR and Nrf2 were investigated by Western blot. Kidney damage was evaluated using PAS staining. All data were evaluated by ANOVA.

RESULTS: Application of squalene combined with Cisplatin was decreased oxidative stress parameters. Interferon-gamma (47.73 %; p<0.05), phospho-Akt (34.45 %; p<0.05) and phospho-mTOR (51.63 %; p<0.05) levels increased. GSK-3B and Nrf2 levels did not change significantly. Histopathologically glomerular/tubular degeneration and mesangial matrix ratio were found to be increased in Cisplatin group, whereas these parameters decreased in Cisplatin with Squalen group significantly (p<0.05).

CONCLUSIONS: It is considered that Squalen might ameliorate the nephrotoxic effect of cisplatin via fosfo AKT and mTOR pathways.

PC079
The Effects of Nifedipine in Liver Injury Induced by Renal Ischemia-Reperfusion
Mustafa Can Güler1, Ayhan Tanyeli1, Ersen Eraslan2, Elif Polat3, Elif Polat4, Nezahat Kurt5
1Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
2Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
3Department Histology and Embryology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
4Medipol University School of Veterinary Medicine, Department of Animal Nutrition, Elazığ, Turkey
5Medipol University School of Medicine Department of Medical Biology, İstanbul, Turkey

AIM: Acute renal injury developing due to ischemia-reperfusion (I/R) damage may lead to dysfunction in extra-renal organs including liver and brain. Reperfusion borne injury might occur due to the increase and activation of leukocytes, release of reactive oxygen types like hydrogen peroxide (H2O2), and intracellular calcium (Ca2+) increase. In our study, we examined the effects of nifedipine, which is a nonspecific calcium channel antagonist, in liver injury induced by renal I/R by determining some oxidative stress markers and the CD38 and cyclic adenosine diphosphate ribose (cADPR) levels that have roles in intracellular calcium regulation.

METHODS: 24 Wistar Albino male rats weighing 240-260g were used in our study. 4 groups were formed each of which had 6 animals. The 1st Group was the Control Group (C). In the 2nd Group, the Sham (S) Group; right kidney was dissected. In the 3rd Group (I/R), 1 hour ischemia 24 hour reperfusion were applied to the left kidney after the right kidney was dissected. In the 4th Group (N), the same surgical procedures were applied as in the 3rd Group, and 4mg/kg nifedipine was administered intraperitoneally before the reperfusion started. The statistical analyses and the results are given as mean±SD. The differences were compared with the Tukey Post Hoc Analysis following the one-way ANOVA test.

RESULTS: It was observed that applying nifedipine in liver injury occurring due to renal I/R decreased the MDA, GSH, MPO and H2O2 levels in the group which received nifedipine, when compared with the I/R group, and increased the SOD, Cat, CD38 and cADPR levels; however, these changes are not significant. In the histological examinations; the renal injury increasing with I/R, Caspase-3 expression has decreased with the application of calcium canal antagonists.
This study was supported by Atatürk University SRP (2014/146).
PC080
Effects of Hypericum perforatum on Renal Ischemia-Reperfusion Injury in the Rat
Murat Çakır, Halil Düzova
Department of Physiology, İnönü University Faculty of Medicine, Malatya, Turkey.

AIM: Acute renal failure (ARF) is a common clinical problem with high rates of mortality and morbidity. Renal ischemia/reperfusion (I/R) is one of the most common causes of ARF. Renal I/R causes the occurrence of acute inflammatory response and formation of reactive oxygen species. Hypericum perforatum (HP) popularly called St. John’s wort, is one of the most important pharmaceutical herbs and its extract contains flavonoids and phenolic acids, which have been demonstrated exerting very efficient anti-inflammatory effects and a free radical scavenging activity in animal model of acute inflammation. In this study, we investigated whether HP may have a protective effect against renal I/R damage.

METHODS: Male Sprague-Dawley rats (n=24) were divided into three groups, each including 8 animals: (1) Control group, in which the rats only underwent right nephrectomy; (2) I/R group, right nephrectomy and left kidney ischemia (45 min) and reperfusion (3 h); (3) I/R+HP group, right nephrectomy and left kidney ischemia (45 min) and reperfusion (3h). HP administrated 50 mg/kg intraperitoneally at the beginning of ischemia. Changes in the rat kidney were observed by measuring the tissue levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) enzyme activity and serum levels of blood urea nitrogen (BUN), creatinine (Cre).

RESULTS: In the I/R group, serum levels of BUN and Cre, kidney tissue MDA level increased and kidney tissue GSH-PX, CAT, SOD enzyme activity levels decreased significantly compared to the control group (P<0.05). In the IR+HP groups’ serum levels of BUN and Cre increased, and kidney tissue SOD enzyme activity levels decreased significantly compared to the control group (P<0.05). In the IR+HP groups’ kidney tissue GSH-PX, CAT, SOD enzyme activity levels increased significantly compared to the I/R group (P<0.05).

CONCLUSIONS: This study showed that HP prevents increasing of MDA levels and decreasing of GSH-PX, CAT, SOD enzyme activity levels in renal induced by I/R but the other changes didn’t the improvement. This study was supported by İnönü University BAP (2016/40).

PC081
Effects of Maternal Nicotine Exposure on the Caspase-3 Expression in the Kidney Tubule Cells
Azibe Yıldız1, Nigar Vardi1, Merve Göksen Karaslan2, Birgül Yiğitcan1
1İnönü University, Faculty of Medicine, Medical School, Department of Histology and Embryology, Malatya, Turkey
2İnönü University, Arts and Sciences Faculty, Department of Chemistry, Malatya, Turkey

AIM: Maternal exposure to cigarette smoke has been shown to have detrimental effects on the development of fetuses and infants. Nicotine is an important component of cigarette smoke and offspring have been exposed to nicotine via the placenta and mother’s milk. Nicotine has been reported to induced apoptosis in offspring tissue. Nicotine shows its effects through activating nicotinic acetylcholine receptors (nAChRs). For that reason, it has been thought that increased expression of apoptotic markers in the cells associated by activating of nAChRs. In the present study, we aimed to investigate the apoptotic effect of nicotine in renal tubule cells of offspring of rats exposed to nicotine during gestation and lactation period.

METHODS: 54 diabetic patients and 20 healthy volunteers were included in the study. Diabetic patients were divided into 3 groups such as normoalbuminuric, microalbuminuric and macroalbuminuric according to their levels of urinary microalbumin; and into 2 groups according to the existence of diabetic neuropathy and retinopathy. Urinary PDGF-BB, microalbumin, serum HDL, LDL,
triglyceride, total cholesterol, blood HbA1c levels were analyzed on each groups. Electromyography was done for the evaluation of diabetic neuropathy.

RESULTS: No significant difference was determined in the comparison of normo, micro, macroalbuminuric groups in terms of urinary PDGF-BB levels. The levels of cholesterol in macroalbuminuric group were significantly higher than the microalbuminuric (p=0.008), normoalbuminuric (p=0.001) and control group (p=0.001). The concentration of urinary PDGF-BB in neuropathic group was higher than in the non-neuropathic group (p<0.001). The levels of HbA1c in retinopathic group were higher than in the non-retinopathic group (p<0.001).

CONCLUSIONS: The results of this study revealed that urinary PDGF-BB cannot be used as a biomarker for the early diagnosis of diabetic nephropathy. In this study the association between the urinary PDGF-BB and diabetic neuropathy has been found to be significant for the first time. This work may inspire future studies on this subject.

PC083
Investigation of the Effects of Some Catecholamines on the Activity of Carbonic Anhydrase Enzyme Purified from Bovine Kidney Tissue
Hilal Urçar1, Esra Şentürk2, Murat Şentürk1, Mustafa Gül3, Serap Yıldırım4
1Arıvın Coruh University, Faculty of Health Sciences, Artvin, Turkey
2Ağrı İbrahim Çeçen University, School of Health Services, Ağrı, Turkey
3Ağrı İbrahim Çeçen University, Department of Chemistry, Ağrı, Turkey
4Atatürk University, Faculty of Medicine, Department of Physiology, Erzurum, Turkey

AIM: Carbonic anhydrase (CA, EC 4.2.1.1) is known as a very important enzyme regulating CO2 levels in living organisms. CA which exists usually in mammalian tissues catalyzes interconversion hydration whereby carbon dioxide is transported to hydrogen ion. Since CA inhibitors decreases pressure in the eye they lead developing numerous medicines against glaucoma, antitumor, pain reliever, epilepsy, and neurological diseases. Therefore, the inhibition mechanism of CA enzymes must be explored clearly in order to synthesize new crucial compounds. It was aimed in this study to purify CA enzyme from healthy bovine kidney tissue and investigate the inhibitory effects of catechol, tyrosine, noradrenaline and adrenaline. METHODS: Kidney tissue was fractionated by liquid nitrogen. 50 mM K- phosphate, (pH 7.5), buffer was used to prepare homogenate. It was centrifuged at 10,000 g for 30 min. Bovine kidney enzyme was isolated by means of cellulose-phenyl-sulphonamide affinity column. CA activity was determined by the esterase method which follows the formation of 4-nitrophenylacetate to 4-nitrophenol at 348 nm. Activity%-[Inhibitor] graphs were drawn and IC50 values were calculated. RESULTS: Benzenesulfonamide, p-toluenesulfonamide, sulfanilamide, mafenide, and 4-chloro benzenesulfonamide were tested to observe to inhibit this enzyme at low concentrations. CONCLUSIONS: Inhibitory effects of some sulfonamides on CA enzyme was investigated. It was observed that IC50 values of benzenesulfonamide, p-toluenesulfonamide, sulfanilamide, mafenide, and 4-chloro benzenesulfonamide were 0.512, 0.543, 0.36, 0.457, and 0.243 µM, respectively. % Activity - [Inhibitor] plots by plotting the calculated IC50 values were found to be significant when compared with literature. The error margin in the study was found to be in the range of 1-3%.

PC085
Purification of Carbonic Anhydrase Enzyme from Bovine Liver Tissue and Investigation of the Inhibitory Effects of Bischalcone Derivatives
Lütfi Karagoz1, Tayfun Arslan2, Deniz Ekincli3, Murat Şentürk4, Nurettin Yaylı2, Fikriye Uras3
1Marmara University, Faculty of Pharmacy, İstanbul, Turkey
2Giresun University, Technical Sciences Vocational School, Giresun, Turkey
3Ondokuz Mayıs University, Department of Agricultural Biotechnology, Samsun, Turkey
4Ağrı İbrahim Çeçen University, Department of Chemistry, Ağrı, Turkey

AIM: It was aimed in this study to purify carbonic anhydrase II (bCA II) enzyme from healthy bovine liver tissue by means of newly synthesized affinity gel and to investigate inhibitory effects of five different bischalcone, catechol, resorcinol, progalloyl, and acetazolamide (AZA).
Esra Şentürk and Adrenaline
tobeintherangeof%1-3.

Bovine Liver Tissue on Glutathione Reductase Enzyme

RESULTS: Bovine liver CA II enzyme was purified 59.4 fold with 1160 EU/mg protein and 40.14% yield. Most of these compounds were observed to inhibit this enzyme at low concentration.

CONCLUSIONS: bCA II enzyme was purified and inhibitory effects of bischalcon derivative compounds, catechol, resorcinol, pyrogalol, and AZA on the enzyme were investigated. Inhibition effects on the enzyme whereas bischalcon derivatives, phenolic compounds moderate and AZA had strong inhibitory actions. The margin of error for the IC 50 values found in this study between 1-3%. This study was financed by Turkish Research Council-TÜBİTAK (KBAG 1142731).

PC086
Bovine Liver Tissue on Glutathione Reductase Enzyme
Determination of Effects of Thiamine, Tyrosine, Dopamine and Adrenaliné

Esra Şentürk1, Hilal Urçar3, Murat Şentürk1, Serap Yıldırım2, Mustafa Gül2
1 Ağrı İbrahim Çeçen University, School of Health Services, Ağrı, Turkey
2 Atatürk University Faculty of Medicine, Department of Physiology, Erzurum, Turkey
3 Artvin Çoruh University, Department of Nursing, Artvin, Turkey

AIM: It was aimed in this study to partially purify glutathione reductase (GR) enzyme from healthy bovine liver and to investigate inhibitory effects of thiamine pyrophosphate, L-tyrosine, dopamine, and adrenaline.

METHODS: Liver tissue was broken down into by liquid nitrogen. 50 mM K-phosphate, 1 mM EDTA (pH 6.0), buffer was prepared homogenates. It was centrifuged at 10,000 g for 30 min. (NH4)2SO4 precipitation and dialysis were performed purification. GR enzyme purified by 2', 5'-ADP Sepharose-4B affinity chromatography. GR activity was determined as substrates NADPH and GSSG at 340 nm. Activit %-[Inhibitor] graphs were drawn and IC50 values were calculated.

RESULTS: Used different purification method bovine liver GR enzyme was purified 41.89 fold with 12.944 EU/mg protein and 62.33% yield. Most of these compounds were observed to inhibit this enzyme at low concentrations.

CONCLUSIONS: Bovine liver GR enzyme was purified and inhibition effects of some natural amines on the enzyme was investigated. Liver GR enzyme IC50 values of thiamine pyrophosphate 6.79 µM, L-tyrosine 4.03 µM, dopamine 5.21 µM, and adrenaline 3.31 µM were determined. Values of inhibition obtained was determined to be statistically significant. The error margin in the study was found to be in the range of %1-3.

PC087
Investigation of Degeneration Process by Thiol-disulphide Homeostasis in Surgical and Natural Menopause

Vakkas Korkmaz1, Zehra Kurdoğlu1, Murat Alışık2, Hilal Korkmaz3, Ezgi Turgut1, Bilge Pehlivanoğlu1, Özcan Ereıl
1 Ankara Training and Research Hospital, Department of Obstetrics and Gynecology, Ankara, Turkey
2 Yıldırım Beyazıt University, Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
3 Hacettepe University, Faculty of Medicine, Department of Physiology, Ankara, Turkey

AİM: Thiol-disulphide homeostasis indicates overall degeneration/regeneration status of the body and a shift towards thiol denotes the dominance of degeneration. We aimed to investigate thiol-disulphide homeostasis in naturally or surgically induced post-menopausal women.

METHODS: After obtaining the informed consent, a total of 107 participants, who applied to the Ankara Training and Research Hospital, Department of Obstetrics and Gynecology, were divided into natural menopause (n=75) and surgical menopause (n=32) groups. The groups were compared for clinical findings determined by patient history and physical examination, and lipid profile, albumin, total protein, lipoprotein a, seruloplasmin, catalase, myeloperoxidase and thiol-disulfide balance measured in blood samples.

RESULTS: The study groups were similar for age, body mass index and the duration of the menopause. The serum thiol level was significantly higher in surgical menopause group (207.1±75.5; 282.6±86.5), (p <0.001) and the serum disulphide level was significantly higher in natural menopause group (24.8±7.7; 21.0±8.3), (p=0.03). Thiol-disulfide balance was shifted towards disulfide in surgical menopause group (Disulphide/thiol % ratio was 15.9±13.2 and 8.9±6.3 in natural and surgical menopause groups, respectively) (p=0.001). The serum thiol level was moderately correlated with lipoprotein a (r=-0.342, p<0.001) and total protein (r=0.468, p<0.001).The serum disulphide level was negatively correlated with albumin (r=-0.318, p=0.001) and total protein (r=-0.303, p=0.002).

CONCLUSIONS: The level of serum thiol-dissulphide and their correlations with serum lipid and protein levels indicates a slower degeneration process in surgical menopause group. It can be suggested that compensation mechanisms in women experiencing surgical menopause, before completing the natural degeneration process, was stronger. The metabolic cost of the menopausal period is less.

PC088
Time- and Dose-dependent Effects of Lead on the Number of Cultured Granulosa Cells Showing Steroidogenic Activity

Fatih Sultan Bilmen, Özkân Şimşek, Ruhi Kabakçı, Şevket Arkan
Kirikkale University, Faculty of Veterinary Medicine, Department of Physiology, Kirikkale, Turkey

AİM: It is well known that lead has adverse effects on biological systems. The aim of this study was to determine the time- and dose-dependent effects of lead acetate trihydrate on the number of cultured granulosa cells showing steroidogenic activity.

METHODS: Cattle ovaries were collected from the local abattoir. After dissecting the follicle from the ovaries, it (4-8 mm) was placed
in a petri dish. Granulosa cells were gently scraped from the inner surface of the follicular with an inoculation loop. The cells (25,000 cell/well) were incubated without treatment for the first 24 h. Subsequently, granulosa cells were incubated in media containing lead acetate trihydrate (500, 1000 and 2000 µM) for an additional 12, 24 or 48 h. After each incubation period, cells growing on the bottom surface of the plates were stained for 3-beta-Hydroxysteroid dehydrogenase (3β-HSD) activity. Stained cells were counted on an inverted microscope.

RESULTS: Incubation of the cells with 3 different doses of lead for 12 hours did not induce any effect on the granulosa cells. In contrast, treatment of cells with increased lead doses for 24 hours resulted in significant decline (p<0.001) in the cell number only at the highest application. Additionally, incubation of the cells with 1000 and 2000 µM lead for 48 hours also induced significant (p<0.01) reduction. Rate of reduction changed between 28% and 57% depending on the doses of the lead used and duration of the incubation.

CONCLUSIONS: As a result, adverse effects of lead acetate trihydrate on the number of cultured granulosa cells were observed depending on the dose and incubation duration.

PC089 Cortisol Awakening Response, Ovarian Steroids and Premenstrual Symptoms in Healthy Premenopausal Women Tuba Özgöçer, Cihat Uçar, Sedat Yıldız, Özlem Barutçu İnönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey

AIM: Premenopause, characterized by menstrual irregularities, endocrine changes and abnormal menses, coincides with psychological distress, instability, anxiety and mood disorders. Disruption in cortisol, estradiol and progesterone secretions may play crucial roles in manifestation of these symptoms. Thus, our aim was to assess progesterone and estradiol secretions and cortisol awakening response (CAR) at the menstrual and premenstrual stages in premenopausal women.

METHODS: CAR was assessed by measuring salivary cortisol at 0, 15, 30 and 60 min immediately following awakening (n=15, age=41-50) at menstrual and premenstrual stages of the menstrual cycle. Saliva sample taken at 60 min was also used for determination of progesterone and estradiol. DRSP (Daily Records of Severity of Problems), STAI-II (trait anxiety inventory) and VAS (visual analog scale) were used to assess presence of premenstrual syndrome, anxiety and pain, respectively.

RESULTS: CAR was lower during menstruation (p<0.01). Progesterone was significantly elevated during premenstrual period (p<0.01) but estradiol was unchanged (p>0.05). Positive significant correlations were found between cortisol and progesterone (R²= 0.471; p<0.01) at menstrual period; cortisol and estradiol (R²= 0.418; p<0.05) at premenstrual period. Negative significant correlations were found between menstrual cortisol and STAI-II (R²= -0.627; p<0.01) or menstrual pain (R²= -0.577; p<0.02). Premenstrual syndrome scores were similar (p>0.05).

CONCLUSIONS: Decreased CAR during menstrual stage was associated with lower progesterone but higher anxiety and pain in premenopausal women. This suggests that CAR might be an important correlate of ovarian dynamics and behavior in menstrual cycle physiology. Supported by TÜBİTAK (Project # 1155949).

PC090 The Effects of Adropin Application on the Hormones Having a Role in the Reproduction Function Mustafa Can Güler1, Ersen Eraslan1, Ayhan Tanyeli2, Elif Polat2, Tuğba Bal3, Nezahat Kurt1
1Department of Physiology, Faculty of Medicine, Atatürk University, Turkey
2Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
3Department of Histology and Embryology, Faculty of Medicine, Atatürk University, Erzurum, Turkey

AIM: Adropin, determined by Kumar et al in hypothalamus and many tissues in 2008, is a novel metabolic hormone. In our study, we examined the effects of different dosages of adropin hormone on hypothalamus hypophysal gonadal axis, modulating reproductive functions.

METHODS: A total of 40 Wistar albino rats were used in this study. 4 groups were formed each included 10 animals. First group control, second group sham. Adropin was administered intraperitoneally to third and fourth groups 4µg/kg and 40µg/kg, respectively, for 7 days. The hormone levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), inhibin, activin and testosterone have been measured by using ELISA method. The statistical analysis was performed using Bonferroni posthoc analysis followed by one-way ANOVA test. All the results were represented as mean±SD.

RESULTS: When compared to the control group; while FSH level does not change in the groups to which high dose adropin was applied, activin and LH levels were decreased (P<0.05), testosterone and inhibin levels were increased (P<0.05).

CONCLUSIONS: Administration of adropin may cause to the decrease of LH level due to the negative feedback by increasing the level of testosterone. In addition, we think that it may cause to the stability of FSH level due to the effects on inhibin and activin. This study was supported by Atatürk University BAP (Project no: 2015/39).

PC091 Maternal Viral Infection in the Late Gestation Shortens Time to Puberty without Affecting Body Weight in Rat Offspring Pınar Çakan, Tuba Özgöçer, Sedat Yıldız İnönü University, Medical School, Department of Physiology, Malatya, Türkiye

AIM: Viral infections during pregnancy result in neurological disorders in rat offspring. As reproduction is also controlled by neuroendocrine mechanisms, we postulated that viral infections might also perturb reproductive functions including timing of puberty in rat offspring. For that purpose, we injected a viral mimic to pregnant rats and assessed the time to puberty in the offspring.

METHODS: Pregnant Sprague-Dawley rats were injected (i.p.) with saline or poly i:c, a viral mimic, at the late pregnancy (day 17) and female and male offspring born were taken into the experiment. Finally, a total of four groups were formed: male poly i: c (n=10), male control (n=4) female poly i: c (n=5) and female control (n=4). Their body weight was followed from weaning to puberty. Vaginal opening and preputial separation was used to assess timing of puberty in female and male offspring. Data was analyzed using ANOVA wit-
Results: Body weight at weaning and puberty were indifferent between the groups (P>0.05). Both male and female offspring had similar body weight increases from weaning to puberty. Puberty was earlier in the poly i:c injected groups than the control groups (45.1±1.3 vs. 51.5±0.8 days; P=0.004).

Conclusions: As a preliminary study, it has been shown for the first time that viral infections in the late gestation might hasten puberty in the next generation. This finding might add new dimensions to the unresolved issue of precocious puberty observed in humans.

Supported by İnönü University, Scientific Research Projects Unit (Project # 2012/41)

PC092
Effect of the Incubation Time and High Dose Lead Application on Steroidogenic Luteal Cell Numbers
Fatih Sultan Bilmen, Buhi Kabakcı, Şevket Arıkan, Özkan Şimşek
Department of Physiology, Kırıkkale University, Veterinary Faculty, Kırıkkale, Turkey

Aim: According to recent data, heavy metals have detrimental effects on human and animal reproduction. Present study was designated to investigate effect of the incubation time and high dose lead application on the number of bovine luteal cells showing steroidogenic activity.

Methods: Luteal cells were isolated from midluteal bovine corpora lutea. Luteal tissue was decomposed into the cells in oxygenated culture media containing collagenase, bovine serum albumin, DNase, and antibiotic/antimycotics solution. Luteal cells were incubated without treatment to induce the adhesion of cells to the bottom of the plate for 24 h. Afterwards, cells were exposed to lead acetate trihydrate (500, 1000 or 2000 µM) for 12, 24, or 48 h. At the end of the incubation, cells were assessed with regard to the activity of 3β-HSD, and counted, via sampling technique according to “the equal opportunity rule” on the bottom of the plate under an inverted microscope.

Results: All three doses of lead induced a significant reduction (P<0.05), depending on dose and time, in the number of luteal cells showing steroidogenic activity. Treatment of the cells with 500, 1000 or 2000 µM lead resulted in 23-46%, 33-58%, and 40-72% decrease in cell numbers respectively, at 12, 24, or 48 h of incubation.

Conclusions: Consequently, it was observed that even the lowest dose of the lead caused negative effects on the luteal cell count at 12 h incubation. Moreover, reduction in cell numbers was in parallel with the applied dose and time.

PC093
Effects of Regular Exercise on Endogenic Reproductive Hormones in Men
Muhammed Öniz, Yıldırım Kayacan
Ondokuz Mayis University, Yaşar Doğu Faculty of Sports Sciences, Samsun, Turkey

Aim: The effects of regular exercise on hormones have been subject of many research and the idea that hormonal changes answered physical activity by metabolic and endocrine adaptation has gained weight. Also, it has been reported that there is a relation between physical activity and FSH and LH of pituitary gonadotropins, estrogen and testosterone of reproductive hormones and prolakin which is also pituitary. However, it is observed that these works had focused on females and works on males has not been enough. The purpose of the study is to examine in the blood the effects of regular exercise on the levels of FSH, LH, estradiol, total testosterone, TSH and prolactin hormones.

Methods: In this work, approximately 10 ml of venous blood was taken from 40 males between 18-25 years old (20 control, 20 exercise) in the laboratory of Kayseri Medical Palace Hospital in the morning at 09:00 and was centrifuged at +4°C, in 4000 rev/min for 5 min. Results were compared with each other as ng/mL. Obtained findings were analysed by independent t test and values which are at P<0.05 level were accepted as significantly different. All procedures were approved by The Clinical Ethics Committee of Ondokuz Mayis University.

Results: According to results of analysis, averages of all parameters, except for TSH, were determined as high level in the sedentary group. Also, in the sedentary group, the levels of estradiol, LH and testosterone were determined as statistically significant. The body mass index of participants were significantly different.

Conclusions: According to these findings, we suggest that regular exercise programmes can affect some male reproductive hormones and would reduce body mass index. However, it is thought that to specify this affect, measurements should be made by testing the protocols of acute/chronic trainings and different energy systems (aerobic-anaerobic). Because, the present findings contradict with the hypothesis that regular exercise increases reproductive hormones.

PC094
Gestational Viral Mimetic Administration in Rats does not Alter Leptin and Corticosterone Levels in Male Offspring
Pinar Çakan, Sedat Yıldız
İnönü University, Medical School, Department of Physiology, Malaty, Turkey

Aim: Resveratrol (RSV) is known with its antitumor, antioxidants effects. Theaim of presentstudy wastoinvestigate the morphologic, biochemical and functional effects of RSV on diabetes nephropathy (DN) in streptozotocin (STZ)-diabetic rat model.

Methods: Ethical Committee for the Use and Care of Laboratory Animals of Gazi University approved the procedures used in this study. 30 adult male Wistar albino rats weighing 250-300g were used in experiments. Therats were divided into 4 groups as follows: 1. Control, 2. Resveratrol, 3. Diabetes, 4. Diabetes + Resveratrol. STZ (65 mg/kg 0.1M incitatebuffer) was administered to diabetes groups, citratebuffer were administered to control groups intraperitoneally as a single dose. Two weeks after STZ administration, abasal blood glucose level above 250 mg/dl were considered diabetic. Application of RSV (10 mg/kg/day dose (dissolved in 0.1M ethanol) or vehicle was started 2 weeks after diabetes formation and continued through 8 weeks busing oral gavage. All experiments rats were anaesthetized with Rompun+ketamine (50+60-100mg/kg), and sacrified by cardiac puncture. During the study; Fasting blood glucose level, renal functions were analyzed and renal vascular response-sand immunohistochemically, morphological research performed
Comparison of Bioactivity of Dioxins in Breast Milk with Body Mass Index in Lactating Mothers

Sami Ağuş1, Özge Atasayan2, Süleyman Sandal2, Fatih Mete3, Sıiglia Eyuboglu1, Bayram Yılmaz1
1Yeditepe University, Medical School, Department of Physiology, Istanbul, Turkey
2Inonu University, Medical School, Department of Physiology, Malatya, Turkey
3Kanuni Sultan Süleyman Research & Training Hospital, Department of Paediatrics, Istanbul, Turkey

Aim: Organochlorinated chemicals are persistent pollutants that pose a threat to the environment and human health. The aim of this study was to investigate bioactivity of dioxins and dioxin-like chemicals and a possible relationship with Body Mass Index (BMI) of breastfeeding mothers and fat content of donated milk.

Methods: Milk samples were collected from 200 healthy lactating mothers who live in Istanbul. Sample collection procedure was approved by the local ethics committee. Each mother was asked to fill a questionnaire form including personal information, medical records, and nutritional behavior. Mothers donated about 10 ml breast milk. 5 ml of milk samples was shaken for 10 min with 5 ml of isopropanol and 10 ml of n-Hexane. The upper phase was transferred to a glass tube and evaporated in a nitrogen evaporator at 45°C. Remaining fat was weighted and suspended with n-Hexane including 3% diethyl ether. The solution was cleaned-up with a silica column. Dioxin bioactivity in the extract was analyzed by reporter gene assay (DR-CALUX). The hepatoma cells which have luciferase gene on Aryl Hydrocarbon promoter region were exposed to the extract for 24 hours. Dioxin bioactivity was determined by lumino-

Results: Mean BMI values of the mothers studied was 26.8 (SD=4.9), and average of the fat percentage of the milk samples was 4.7 (SD=1.8). Dioxin activity was represented as “Toxic Equivalency” (TEQ) and calculated as 1.7 (SD=3.6). As a result of analysis a significant correlation was seen between DR-CALUX results and BMI and fat content (p<0.001).

Conclusions: High level of dioxins was observed in the samples with high fat content milk samples. This positive correlation is taken to reflect bioaccumulation of dioxins (that are lipophilic) in fat tissue. These findings obtained from a high number of breastfeeding mothers provide important information about VKI and nursing-health. This study was supported by TUBITAK (Project # 113S115).

The Role of Central Arginine Vasopressin in Colonic Motor Maladaptation Induced by Chronic Heterotypic Stress

Mehmet Bülbül, Osman Sinen, Ilknur Birsen, V. Nimet İlzgüt Uysal
Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey

Aim: Stress is known to play a role in etiopathogenesis and symptomatic exacerbation of irritable bowel syndrome (IBS). Arginine vasopressin (AVP) is mainly produced in paraventricular nucleus (PVN) and supraoptic nucleus (SON) of hypothalamus. Besides its well-defined physiological effects such as regulation of body water content and peripheral vascular resistance, along with corticotropin-releasing factor (CRF), AVP mediates stress response as a neurotransmitter and a neuromodulator in brain. Acute stress is known to activate hypothalamic AVP-producing neurons and AVP receptor-expressing cells in dorsal motor nucleus of N.vagus (DMV). In rodents, chronic heterotypic stress (CheS) causes long-lasting increases in hypothalamic CRF production and colonic motility, however the role of AVP in relevant mechanism is not well-known. Using rat CheS model, the aim of the present study is to clarify (1) the alterations in hypothalamic AVP production and (2) the role of central endogenous AVP in colonic motor maladaptation.

Methods: The non-adaptive stress model CheS was utilized in adult male rats by loading a combination of different stress models for 7 consecutive days. Microdialyses were obtained every 30 min from parvocellular region of PVN during pre-RS, RS and post-RS periods on 1st and 7th days of CheS. AVP levels were measured using EIA method. In order to elucidate role of central endogenous AVP in CheS-induced colonic motor maladaptation, selective AVP receptor antagonist SR-49059 was daily administered intracerebroventricularly (icv) throughout CheS. CT was measured by determination of the geometric center using spectrophotometry. One-way (CT) or two-way (microdialysis) ANOVA with repeated measures followed by an appropriate post-hoc analysis were used to determine the significance among the groups.

Results: CheS significantly (p<0.05) increased AVP in RS and post-RS periods. At the end of CheS, acute stress-induced accelerated colon transit was not adapted and still measured high. However, this maladaptation was abolished (p<0.05) by chronic icv administration of SR-49059 and colon transit was restored to control levels.

Conclusions: AVP plays a role in CheS-induced colonic hypermotility and central AVP receptor antagonism seems to be a candidate for treatment of IBS.
Effects of Melatonin on High-Fat Diet-Induced Inflammation and Delayed Intestinal Transit: Involvement of Gut Microbiota

Sevil Arabaci Tamer1, Alper Yıldırım1, Duran Şahin2, Fatma Bağrıaçık2, Merve Meriç Kahraman3, Nilsu Damla Onur3, Yusuf Burak Çayırlı2, Özlem Tuğçe Çilingir3, Burak Aksu4, Meral Yüksel3, Şule Çetinel3, Berrak Ç. Yeşen1

1Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey
2Marmara University School of Medicine, Istanbul, Turkey
3Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
4Marmara University School of Medicine, Department of Microbiology, Istanbul, Turkey
5Marmara University Vocational School of Health Service, Istanbul, Turkey

AIM: Antibiotics-induced dysbiosis affects metabolism by means of fat accumulation and gastrointestinal changes induced by short-term ingestion of high fat diet (HFD) and antibiotics.

METHODS: Six-week-old male Sprague Dawley rats (n=64) were randomly divided in to 8 groups; pair-fed with chow or HFD (45% fat), and were given either antibiotics (neomycin+ampicillin+metronidazole; 1 g/L each) or melatonin (4 mg/kg/day) or melatonin+antibiotics (MA) in drinking water. Fecal output was used as an index for colonic motility and intestinal transit was assessed using charcoal propagation. Liver, epididymal and perirenal fat weight, plasma triglyceride, alanine aminotransferase, glucose levels and inflammatory parameters (MPO, MDA, NO, GSH) in liver and ileum were measured. Histologically ileal villus heights and fecal bacterial colonies were counted. Statistical analysis was made by ANOVA and Student’s t tests.

RESULTS: HFD increased perirenal fat weight (p<0.05), but melatonin prevented fat accumulation. In MA-treated HFD group, increases in perirenal fat and plasma glucose were abolished, while triglyceride levels were further elevated (p<0.05). Reduced colonic and intestinal transits in HFD were further delayed with melatonin, while addition of antibiotics abolished this delay (p<0.001). Villus heights were decreased significantly in HFD-rats with MA treatment (p<0.01). Hepatic and ileal NO and chemiluminescence levels that were elevated by HFD were lower in melatonin-and MA-treated rats. HFD increased ileal and hepatic GSH content without changing MPO and MDA levels, while MA combination depleted GSH (p<0.001). Total fecal bacterial count was reduced by antibiotics, but total bacteria was increased by melatonin and HFD.

CONCLUSIONS: The inflammation and fat accumulation observed following two-week HFD were reduced with melatonin, and the delayed gut transit associated with fat ingestion was further decelerated. Reversal of GSH and motility responses by antibiotics-induced dysbiosis suggest that melatonin-modulated gut microbiota are involved in altered GSH metabolism and gastrointestinal motility due to acute exposition to pro-oxidant lipids.

The Effects of Salusin Alpha and Salusin Beta on Cold Restricted Stress-induced Gastric Injury

Tuğba Bal1, Ersen Eraslan2, Ayhan Tanyeli3, Elif Polat3

1Department of Histology and Embryology, Atatürk University, Faculty of Medicine, Erzurum, Turkey
2Department of Physiology, Atatürk University, Faculty of Medicine, Erzurum, Turkey
3Department of Biochemistry, Atatürk University, Faculty of Medicine, Erzurum, Turkey

AIM: Salusin-α (sal-α) and salusin-β (sal-β) are recently discovered bioactive endogenous peptides with both haemodynamic and mitogenic activity. Sal-α and sal-β immunoreactivity have been detected in the stomach and intestine. Our study is designed to examine the oxidative stress, cytokines and histological effects of administration of sal-α and sal-β on cold-restricted stress (CRS)-induced gastric ulcers.

METHODS: A total of 32 Sprague-Dawley, male rats were divided into four groups (n=8/group) randomly. Group1: Control; Group2: CRS (Rats were placed individually in the restriction chamber and were subjected to the cold restricted stress at 4°C for 4 hours); Group3: CRS+5nmol/kg Sal-α; Group4: CRS+5nmol/kg Sal-β. Animals were euthanized 4h after CRS administered and their stomachs and blood tissues were immediately collected. We determined malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), salusin-α and salusin-β levels from stomach tissue and tumor necrosis factor-α (TNF-α) level from serum. Multiple comparison tests of Kruskal-Wallis and Dunn were used for the analysis of the data. All the results were presented as mean±SD.

RESULTS: When compared to the control group; while sal-α level (P<0.001) significantly increases in the group to which CRS has been applied, Sal-β has shown a slight increase. MDA, MPO ve TNF-α levels increased and SOD activity decreased in the CRS group, while MDA (P<0.05), MPO (P<0.001) ve TNF-α (P<0.05) significantly decreased, SOD activity increased with administration of sal-α ve sal-β. The mucosal injury and caspase-3 expression increasing with the application of CRS in the histological examinations decreased with the application of salusins.

CONCLUSIONS: The suppression of Sal-α and Sal-β on caspase-3 expression by means of their effects on oxidative injury and TNF-α levels shows that these two hormones could be an anti-ulcerative agent. This study was supported by Atatürk University BAP (2014/145).
PC099
Investigation of the Effects of Olive Leaf Extract on Liver Enzymes in Streptozotocin-induced Diabetic Rats
Zehra Yarım, Recep Dokuyucu, Okan Tutuk, Hatice Doğan, Irem Hüzneli, Öğuzhan Özcan, Cemil Tümér, Duygu Aktar Reyhanioğlu
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2School of Physical Medicine and Rehabilitation, Mustafa Kemal University, Hatay, Turkey
3Department of Medical Biochemistry, School of Medicine, Mustafa Kemal University, Hatay, Turkey
4Physiotherapy and Rehabilitation Department, Faculty of Health, Izmir University, Izmir, Turkey

AIM: The aim of this study was to investigate effects of olive leaf extract (OLE) which is effective in glucose metabolism on liver enzymes in rats with induced diabetes with streptozotocin (STZ).

METHODS: Thirty-two male Wistar albino rats were randomly divided into four groups (for each n=8): Group 1 (control); Group 2 (STZ induced diabetic); Group 3 (STZ+OLE); Group IV (OLE+STZ). Two diabetic groups (STZ+OLE, OLE+STZ) fed for 6 weeks with 0.5g/kg OLE by oral gavage. Blood glucose levels measured before surgery. Hexokinase (HK), pyruvate kinase (PK), glucose-6-phosphatase (G6P), fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase (G6PD) enzymes which are effective in glucose metabolism measured by Eastbiopharm ELISA kits. One-way Anova test (posthoc Bonferroni and Student’s t-test) and Kruskal-Wallis test (posthoc Dunn’s test) were used for statistical analysis. p<0.05 values was considered statistically significant.

RESULTS: There was a significant decrease in only Group 4 between pre and post experiment outcomes in blood glucose values (p<0.05). HK levels increased when comparing treatment groups according to the diabetic group in intra-group measurement. Statistically significant increase was found in PK levels in Group 3. It was calculated that G6PD levelssignificantly rising between treatment groups were planned as vehicle, menthol, nicotine, menthol+nicotine combination for main groups of ulcer-created and no ulcer-created. Gastric damage was created via orogastric administration of 1ml absolute-ethanol. Mucosal damage was scored on cages and switched with the other daily. The dose of drug solutions were prepared as menthol 1g/L, nicotine 60mg/L. Subgroups were planned as vehicle, menthol, nicotine, menthol+nicotine combination on experimental gastric ulcer damage in stomach, intestine, liver and kidney.

METHODS: Sprague-Dawley male rats were used. Control group (n=7) received i.p. saline for 14 days, Taurine group (n=8) was administered i.p. taurine (150 mg/kg body weight/day) for 14 days, Doxorubicin group (n=8) received a total dose of 25 mg/kg body weight divided into 3 days (days 12, 13 and 14, i.p.).Taurine+Doxorubicin group (n=8) received the same doses of taurine and DOX with the same protocol. On the 15th day, having the rats anesthetized, blood samples were collected to determine the ALT, AST and ALP levels, and liver tissues were excised to evaluate the oxidative stress parameters and histopathological findings. Data were analyzed by Kruskal-Wallis followed by Dunn test. (This study was supported by scope of “Teaching Staff Training Program”)

RESULTS: DOX administration increased tissue malondialdehyde (MDA) (P<0.05) and protein carbonyl (P<0.05), serum ALT (P<0.01), AST (P<0.01) levels and decreased ALP (P<0.05) level, but not affected catalase activity. Taurine pre-treatment ameliorated the DOX-induced tissue degeneration, congestion, cell infiltration, nuclear membrane pore enlargements. ALT, ALP, MDA, but not AST and protein carbonyl levels approached to control by taurine pre-treatment.

CONCLUSION: Taurine pre-treatment protects the liver tissue against DOX-induced injury by reducing lipid peroxidation and stabilizing the membranes.

PC101
The Effects of Menthol-nicotine Usage on Gastric Mucosal Damage and the Investigation of Possible Mechanisms
Serdar Sahintürk, Zülfüye Gül, Betül Cam, Deniz Bağdaş, Naciye İşıl Büyükoçkun, Kasm Özlık
1Department of Medical Physiology, Faculty of Medicine, Uludağ University, Bursa, Turkey
2Department of Medical Pharmacology, Faculty of Medicine, Uludağ University, Bursa, Turkey
3Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludağ University, Bursa, Turkey

AIM: Since the limited area for smoking tobacco products, the use of orally taken nicotine products increases. Some flavors such as menthol are added into those products to cover the bitter taste of nicotine. Previously, it has been shown that menthol has gastroprotective effects via its anti-apoptotic, anti-oxidant, anti-inflammatory properties. In this study we aimed to investigate the effects of menthol-nicotine combination on experimental gastric ulcer damage in stomach, intestine, liver and kidney.

METHODS: Sprague-Dawley, 63-male rats were used in the study. Voluntary two-bottle choice drinking was performed during 14 days. The bottles for water and drug solutions were separately placed on cages and switched with the other daily. The dose of drug solutions were prepared as menthol 1g/L, nicotine 60mg/L. Subgroups were planned as vehicle, menthol, nicotine, menthol-nicotine combination for main groups of ulcer-created and no ulcer-created. Gastric damage was created via orogastric administration of 1ml absolute-ethanol. Mucosal damage was scored macroscopically. Malondialdehyde(MDA), glutathione(GSH), mye-
lperoxidase (MPO), and superoxide dismutase (SOD) levels were measured in stomach, intestine, liver and kidney tissues. RESULTS: Mucosal ulcer scores were found on average 4.5± s for all groups. No statistical difference was found in MDA values between groups. MPO levels were higher in stomach, intestine, liver and kidney in ulcer-created groups; however, GSH levels were lower. Menthol-nicotine combination decreased MPO levels in all tissues but liver in ulcer-created group. This combination has no affect on GSH levels. SOD levels were found in all tissues of ulcer-created group following menthol+nicotine use. CONCLUSIONS: The voluntary choice drinking of menthol+nicotine combination did not affect gastric damage, but altered the GSH, MPO, SOD levels.

PC102
The Effects of 2.45 GHz Electromagnetic Radiation on the Rat Liver Tissue: Role of Melatonin
Nurhan Gumral1, Duygu Kumbul Doguc2, Tahir Catalbas2, Rahime Aslankoc2
1Department of Physiology, Süleyman Demirel University, Faculty of Medicine, Isparta, Turkey
2Department of Biochemistry, Süleyman Demirel University, Faculty of Medicine, Isparta, Turkey
3Department of Midwifery, Süleyman Demirel University, Isparta, Turkey

AIM: The biological effects and the human health considerations of electromagnetic radiation (EMR) have been the subject of scientific investigations for most of this century. The present study was carried out to evaluate the effects of 2.45 GHz EMR exposure in liver of rat and possible ameliorative effects of melatonin.

METHODS: Thirty two male Wistar albino rats were divided into four equal groups: Cage-Control Group; [dimethyl sulfoxide (DMSO) 10 mg/kg/day, i.p., without stress and EMR], Sham-Control Group; [rats stayed in restrainer without exposure to EMR and DMSO (10 mg/kg/day, i.p.)], group exposed to 2.45 GHz EMR (EMR Group) (60 minutes/day/30 days), 2.45 MHz EMR exposed (60 minutes/day/30 days)+melatonin (10 mg/kg/day, i.p.) treated group (EMR+Melatonin Group). At the end of the study period, liver tissues were taken for oxidant-antioxidant examinations. Data was evaluated with Mann Whitney U ve ANOVA Test.

RESULTS: In the EMR group, MDA level were observed significantly increased when compared with Sham Group (p=0.019). There was statistically significant difference between EMR Group and EMR+Melatonin Group. MDA level decreased in the EMR+Melatonin Group (p=0.006). Moreover, there was statistically significant difference between Sham Group and EMR Group in the CAT, SOD, GSH-Px enzyme activities. The enzyme activities were reduced in the EMR Group (respectively; p=0.005, p=0.028, p=0.009). In addition to, there was statistically significant difference between EMR Group and EMR+Melatonin Group. The same enzyme activities increased in the EMR+Melatonin Group (respectively; p=0.006, p=0.002, p=0.001).

CONCLUSIONS: Our results showed that 2.45 GHz EMR made changes on the rat liver tissue’s oxidative-antioxidative parameters and administration of melatonin significantly ameliorated these changes.ported by Süleyman Demirel University Scientific Research Project Coordinator (2531-M-10).

PC103
The Role of Lidocaine on Transient Receptor Potential Melastatin (TRPM) 6,7 Channels in Hepatic Ischemia/Reperfusion Rat Model
Recep Dokuyucu1, Hatice Doğan2, Okan Tutuk3, Fatih Sefil4, Hülsü Cemil Tümer5
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
3Department of Pathology, School of Medicine, Inonu University, Malatya, Turkey

AIM: Lidocaine is a common local anesthetic that blocks sodium channels, inhibits platelet aggregation and suppresses mitochondrial functions of neutrophils. Therefore, we aimed to investigate the effects of lidocaine on TRPM6,7 gene expressions levels in hepatic ischemia-reperfusion rat model by thinking of lidocaine will be effective in recovery after reperfusion injury.

METHODS: 40 male Wistar albino rats were randomly divided into 5 groups; group I: Control (n=8); group II: Sham (n=8); group III: Lidocaine (Lid; 2 mg/kg, n=8); group IV: 45 min Ischemia+60 min Reperfusion (IR, n=8); group V: Lid+IR (Lid; 2 mg/kg, 45 min ischemia+60 min reperfusion, n=8). Single dose lidocaine (2 mg/kg) was intraperitoneally given to rats of the treatment group (Lid+IR) before 10 min of reperfusion period. At the end of reperfusion, rats were sacrificed and liver tissues, blood samples were collected for molecular, histopathological and biochemical analyses.

RESULTS: Polymorphonuclear leukocytes (PNL), congestion, apoptosis, cellular swelling and the total oxidant status (TOS) increased significantly in IR group as compared to other groups. But total antioxidant status (TAS) decreased in I/R group as compared to other groups (p<0.05). While TAS increased in Lid+IR group as comparison with IR group; PNL, congestion, apoptosis, cellular swelling and TOS decreased significantly in Lid+IR group as comparison with IR group (p=0.05). Additionally TRPM6,7 genes expression levels were significantly higher in IR group when compared to Lid+IR group (p=0.01; p=0.02, respectively).

CONCLUSIONS: Based on these results, it was suggested that lidocaine may give beneficial results by effecting the apoptotic process and reducing TRPM6,7 genes expression levels as a sodium channel blocker for treatment of hepatic ischemia-reperfusion injury.

PC104
The Effect of Caffeic Acid Phenethyl Ester (CAPE) on TRPM 2, 8 Channels in Hepatic Ischemia-Reperfusion Model
Recep Dokuyucu1, Hatice Doğan2, Okan Tutuk3, Fatih Sefil4, Bülent Gögebakan2, Hasan Gökçe2, Cemil Tümer5
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
3Department of Pathology, Hospital of Adana Numune Education and Research, Adana, Turkey

AIM: Ischemia-reperfusion (I/R) injury causes life-threatening problems in many organs and tissues especially in liver. It is the most type of cell injury in clinical medicine. Intracellular Ca2+ concen-
PC105
Investigation of the Effect of Verapamil on Hepatic Ischemia Reperfusion Injury
Recep Dokuycu1, Hatice Doğan1, Müzeyyen İzmirli2, Nilüfer Bilgiç2, Hasan Gökçe3
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2Department of Medical Biology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
3Department of Pathology, School of Medicine, İnönü University, Malatya, Turkey

Aim: Intracellular Ca2+ concentration increases in I/R injury. TRPM is important channels which have high permeability of Ca2+ and Mg2+. Verapamil, a calcium channel blocker, is an effective cytoprotective agent. The study aimed to investigate the effects of the verapamil on hepatic ischemia/reperfusion(I/R) injury in rats.

Methods: A total of 44 male Wistar albino rats were classified 5 groups as group I: control (C, n=7); group II: sham (n=10); group III: verapamil (5mg/kg, n=7); group IV: ischemia/reperfusion (I/R, n=10); group V: ischemia/reperfusion with verapamil (Ver+I/R, n=10). Animals of groups IV and V were subjected to 45 min hepatic ischemia followed by 60 min reperfusion. 5 mg/kg/day verapamil was intraperitoneally administrated to treatment group (Ver+I/R) before 10 min of reperfusion period. At the end of reperfusion, rats were sacrificed. Liver tissues and blood samples were collected for molecular, histopathological and biochemical analyses. Total oxidant status(TOS), total antioxidant status(TAS), polymorphonuclear leukocytes(PNL), congestion, apoptosis and cellular swelling were evaluated. Kruskal-Wallis test was used for statistical analysis. Statistical significance was considered to be p<0.05.

Results: In the analyses, PNL, congestion, apoptosis, cellular swelling and TOS levels were significantly higher in I/R group than the other groups but the TAS level was lower in I/R group than the other groups (p<0.05). PNL, congestion, apoptosis, cellular swelling parameters and TOS levels were significantly decreased in the treatment group when compared to I/R group but also TAS levels were significantly higher in the treatment group (Ver+I/R) than the I/R group (p<0.05). The expression level of TRPM2,6,7,8 gene were significantly higher in I/R, verapamil, Ver+IR groups compared to sham group (p<0.0024, p<0.0001, p<0.0002, p<0.0060, respectively).

Conclusions: The study showed the CAE effects of verapamil on hepatic ischemia/reperfusion injury.
studies will supply new insights into the mechanisms of inflammation-mediated liver damage. Monocytes. The data indicate that monocyte/hepatocyte coculture stimulated cocultured compared to monocultured HepG2 cells.

Comparison of Inflammatory Signal Responses of Monocytes and Hepatocytes in Mono and Co-culture Models

AIM: Bacterial infection may have a detrimental effect on the course of acute and chronic liver diseases. Leukocytes are a vital part of the innate immune response to microbial infections and tissue trauma in many organs including the liver. Bacterial products especially endotoxin or lipopolysaccharide (LPS) can trigger inflammatory responses and cause further damage in liver. An excessive inflammatory response can lead to a dramatic aggravation of the existing injury.

METHODS: To elucidate the importance of the hepatocyte/immune cell interaction in liver inflammation and the effect of bacterial infection on liver inflammation, we investigated the human hepatocellular cell line HepG2 in coculture with monocytic cells (THP-1) for survival and apoptotic activity. Inflammation level was measured by TNF-α expression/secretion. NFκB, IκB and mitogen activated kinase related pathways (p38, JNK/c-Jun, ERK1/2, akt) were evaluated. The cells were grown in monolayer single cultures or cocultures in transwell inserts and stimulated by LPS (1 μg/ml) for 24 h. RESULTS: Our results showed that THP-1 cells were more sensitive to inflammatory damage (p<0.01). LPS stimulation caused increased LDH secretion and caspase-3 activity (p<0.01), the effect was more prominent in coculture conditions. Coculture of THP-HepG2 cells induced significant NFκB activation mainly in HepG2 cells and TNF-α expression in both cell types (p<0.01). Total IκB levels were unchanged but phosphoIkB levels were significantly decreased in LPS stimulated cocultured compared to monocultured HepG2 cells. Both total/Phospho Akt levels decreased and JNK/c-Jun levels increased in cocultured cells (p<0.05).

CONCLUSIONS: We found that NFκappaB related pathways and at a lesser extend ERK are important for the LPS-stimulated cytokine production in hepatocytes, whereas MAPK pathways involving p38 and JNK contribute to the exacerbation of the inflammation in monocytes. The data indicate that monocyte/hepatocyte coculture studies will supply new insights into the mechanisms of inflammation-mediated liver damage.

The Role of Solute Carrier Oatp1A4 in Brain Injury Pharmacotherapy

Aim: Selective permeability characteristic of blood brain barrier (BBB) prevents pharmacological therapies following central nervous system injury. This restrictive role takes place by either blocking the entrance of pharmaceutical reagents and their accumulation or by active and passive transport systems found on the BBB that carry their substrates inside and outside of the brain. In this study, we aimed to investigate the role of one of these systems, the role of solute carrier Oatp1A4 following middle cerebral artery occlusion.

METHODS: In the first part of the study animals were divided into 6 groups (SF/DMSO, SF/Rosuvastatin 2 mg, SF/Rosuvastatin 20 mg, Glutatyon/DMSO, Glutatyon/Rosuvastatin 2 mg, Glutatyon/ Rosuvastatin 20 mg) and evaluated in terms or neuronal survival, number of apoptotic cell death and activation status of intracellular signaling pathways after 30 min of middle cerebra artery occlusion following 72 hr reperfusion. The activity of Oatp1A4 was evaluated through effects of one of rosuvastatin substrates which have been previously shown to improve neuronal plasticity after cerebral ischemia. In the second part, time-dependent expression profile of Oatp1A4 was investigated. Animals were divided into three groups with 30 min middle cerebral artery occlusion and varying reperfusion time points (12, 24, 72hr). Upon sacrifice, the brain microvessels are isolated and protein level of Oatp1A4 was investigated.

RESULTS: Administration of 2mg/kg and 20mg/kg rosuvastatin has improved the neuronal survival and decreased the number of apoptotic cells whereas the inhibition of Oatp1A4 by glutathione has significantly reversed the favorable effects of 2mg/kg rosuvastatin and slightly reduced the effect of 20mg/kg rosuvastatin in a dose dependent manner.

CONCLUSIONS: Inhibition of Oatp1A4 solute carrier following cerebral artery occlusion has reversed the favorable effects of its own substrate. Thus, it can be concluded that they can be targeted in brain pharmacotherapies.
pamycin (mTOR), modulates GnRH production and regulates puberty onset and fertility. The relationship between mTOR and c-Abl was explained that c-Abl has inhibitory effect on mTOR in case of DNA damage. We hypothesized that c-Abl may have regulatory effect on ER-β and mTOR so we aimed to show whether c-Abl has an effect on ERβ and mTOR in GnRH neurons.

METHODS: GT1-7 cells were cultured in medium containing DMEM, 10% fetal bovine serum and 0.1% antibiotics. GT1-7 cells were treated with 10 μM ds-siRNA to silence c-Abl expression combining with siGLO green transfection indicator in serum-free medium. Cyclohexilam was used as a control. After 24-hour-incubation, siRNA-transfected cells were examined under fluorescence microscope. Protein quantification was done after trypsinization. c-Abl, ER-β and mTOR was evaluated by using Western Blot.

RESULTS: Western Blot results presented that there is a decrease in ER-β level and increase in mTOR expression in c-Abl-siRNA-transfected GT1-7 cells.

CONCLUSIONS: GT1-7 cells provide a useful model system for studying the regulation of hypothalamo-pituitary axis. This study is the first examining the effect of c-Abl on ER-β and mTOR in GT1-7 cells.

PC110
Clopidogrel Exerts Neuroprotective Effect in Experimental Traumatic Brain Injury

Mehmet Yağmur Gündüz1, Mehmet Ozansoy1, Burak Yuluğ2, Ülkan Kılıç3, Özlem Göktürk4, Ilknur Keskin5, Muzaffer Beyza Çetin6, Aşa Arzu Saklı6, Ertuğrul Kılıç3,4
1Department of Physiology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
2Department of Neurology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
3Department of Medical Biology and Genetics, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
4Department of Histology and Embryology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
5Department of Pharmacology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
6Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey

AIM: To evaluate the retina and peripapillary retinal nerve fiber layer thicknesses of patients with vitamin B12 deficiency using optical coherence tomography (OCT) and compare them with healthy subjects; included in this study. Retinal thickness measurements taken at the central retina (fovea) and at 2 points that were 1500 μm nasal and temporal to the fovea using OCT. Independent samples t-test was used for the statistical analysis of the data.

RESULTS: Serum vitamin B12 levels of the healthy subjects and patients with vitamin B12 deficiency was 406.7±426.12 and 160.7±20.06 pg/ml, respectively. The mean central retinal thickness of healthy subjects and patients with vitamin B12 deficiency were 216.06±14.64 and 213.50±13.39 μm, respectively and this difference did not reach to statistical significance (p=0.448). The mean global peripapillary RNFL thickness of healthy subjects and patients with vitamin B12 deficiency were 103.00±10.24 and 100.15±6.42 μm, respectively and this difference did not reach to statistical significance (p=0.217).

CONCLUSIONS: Patients with vitamin B12 deficiency had thinner central retina and peripapillary RNFL. As a preliminary report, our sample size might not to be sufficient to determine the statistical significance for RNFL and retinal thickness.
The Investigation of the Protective Effect of Glucagon-like peptide (GLP-1) Analogue Exenatide on Glucose and Fructose-induced Neurotoxicity

Asghar Khalilinezhad1, Oytun Erbaş2, Dilek Taşkıran1

1Ege University School of Medicine Department of Physiology, İzmir, Turkey
2Istanbul Medeniyet University, Göztepe Education and Research Hospital, Neurosurgery Clinic, İstanbul, Turkey

AIM: Diabetes mellitus is one of the most common metabolic disorders characterized by hyperglycemia due to insufficiency of insulin and/or insulin resistance. Clinical studies have revealed a higher risk of neurodegenerative disorders such as Alzheimer’s disease or Parkinson's disease in diabetic patients. Recently, glucagon-like peptide (GLP-1) is an attractive potential treatment modality for various neurodegenerative diseases. In our study, we aimed to investigate the toxic effects of both high glucose and fructose on neuronal cells. Also, we aimed to assess whether exenatide, a GLP-1 analogue, has neuroprotective effects against glucose and fructose-induced toxicity.

METHODS: ShhWSY neuroblastoma cells were used to evaluate the toxic effects of glucose and fructose. Neurotoxicity was induced by incubating SHhWSY cells with different doses (0-100 mM) of glucose and fructose for 24 hours. Following determination of the significant toxic doses of glucose and fructose, various doses of exenatide (0-100 nM) were added in the cultures to assess its protective effect. XTT (2,3-bis[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide) assay was used to measure cell viability in the cultures. The data were analyzed using independent t-test. P values <0.05 were accepted as statistically significant.

RESULTS: Both glucose and fructose treatments reduced cell viability dose-dependently in neuronal cells. The cell viability was significantly decreased in 50 mM glucose (71.6 ± 9.04%, p<0.0001) and in 50 mM fructose (66.42 ± 4.88%, p<0.0001) compared to controls. However, addition of exenatide in glucose medium significantly prevented cell death in 50 mM glucose and fructose-treated cultures in a dose-dependent manner. The most prominent effect was observed in 100 nM exenatide-treated cultures (p<0.05).

CONCLUSIONS: Our results suggest that high doses of glucose and fructose lead to neurotoxicity and GLP-1 may have neuroprotective effects against neuronal damage.

This study was supported by TUBITAK (project no: 115S136).

Effects of Riboflavin on Traumatic Brain Injury Induced in Rats

Türkan Koyuncuoğlu1, Emin Mehmet Eminoğlu2, Mehmet Erşahin3, Özge Çevik4, Ömercan Albayrak4, Berrak Ç. Yeğen1, Gökşel Şener4

1Marmara University, School of Medicine, Department of Physiology, İstanbul, Turkey
2Istanbul Medeniyet University, Göztepe Education and Research Hospital, Neurosurgery Clinic, İstanbul, Turkey
3Cumhuriyet University, School of Pharmacy, Department of Biotechnology, Sivas, Turkey
4Marmara University, Faculty of Pharmacy, Department of Pharmacology, İstanbul, Turkey

AIM: Presenting with high mortality and morbidity, traumatic brain injury (TBI) results from a head trauma due to a sudden strike. Riboflavin, also known as vitamin B2, is a water-soluble essential vitamin found in various nutrients. This study was aimed to investigate the possible protective effects of riboflavin on trauma-induced oxidative brain damage.

METHODS: Anesthetized male Sprague Dawley rats (n = 36) were divided into 3 groups: control group with scalp incision and vehicle (carboxymethyl cellulose; 1 ml/kg, intraperitoneally, i.p.) injection; traumatic brain injury (TBI) group with weight-drop following scalp incision and vehicle treatment; and TBI+Riboflavin (30 mg/kg/day; i.p.) group. Treatments were continued for 3 days and at 72nd h of trauma rats were decapitated. In brain tissues, levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), neuron-specific enolase (NSE), human soluble protein-100β (S100β), caspase-3 activity, caspase-3 protein expression were measured and reactive oxygen metabolites (ROM) were determined using chemiluminescence (CL). Data were analyzed by ANOVA and Student’s t-test.

RESULTS: In TBI group, antioxidant GSH and SOD levels were decreased as compared to control (p<0.001), but were increased in ri-
boflavin-treated TBI group (p<0.001). MDA levels, caspase-3 activity and cleaved (activated) caspase-3 protein expression, luminol and lucigenin CL levels were increased in TBI group (p<0.001), while these elevations were reversed in riboflavin-treated TBI group (p<0.01). Compared to control group, elevated NSE and S100β protein levels in brain tissue and serum due to brain damage were reduced by riboflavin-treatment (p<0.01).

CONCLUSIONS: Riboflavin ameliorated trauma-induced oxidative brain damage by stimulating antioxidant mechanisms and by suppressing ROM production and apoptosis.

PC115

Effects of Black Cumin Seeds and Certain Species of Fungi Extracts on the Number and Degranulation of Mast Cells in Dura Mater in Rats

Ercan Kökçü¹, Yaşar Dağıstan²

¹Department of Physiology, Faculty of Medicine, Abant İzzet Baysal University, Bolu, Turkey
²Department of Neurosurgery, Faculty of Medicine, Abant İzzet Baysal University, Bolu, Turkey

AIM: It has been postulated that mast cell degranulation in dura mater plays key role in migraine pathophysiology by causing neurogenic inflammation and activating meningeal nociceptors. It was reported that certain species of fungi caused allergy and headache, but black-cumin seeds have antinociceptive and antihistaminic effects. In the present study, it was aimed to investigate effects of black cumin seeds and certain species of fungi extracts on number and degranulation states of mast cells in dura mater.

METHODS: Rats were divided into eight groups (n=5, male Wistar, 200-250g). Control and C-48/80 groups were fed with tap-water for three days, but at the end of third day C-48/80 group was injected with compound-48/80 (2 mg/kg, i.p.), Nigella+C-48/80 group was fed with tap-water with extract of Nigella sativa (black cumin) seeds (4 mg/ml) for three days and at the end of third day they were injected with compound-48/80. Condensata, Salmonicolor, Pippertus and Terreum groups were fed with tap-water including their own extracts (4 ml/kg), respectively. Because only Tricholoma terreum caused effects on mast cells, Nigella+Terreum group was fed with tap-water with their combination for three days. Mast cells were counted and evaluated their granulation/degranulation states. Data were analyzed by one-way ANOVA test using SPSS 17.0.

RESULTS: Compound-48/80 and Tricholoma terreum caused degranulation of dural mast cells, respectively (p<0.01 and p<0.05). Tricholoma terreum increased total number of mast cells (p<0.05). Nigella sativa inhibited mast cell degranulation induced by both compound-48/80 and Tricholoma terreum (p<0.05), respectively, and decreased increased mast cell numbers caused by Tricholoma terreum (p<0.05). Probably, Tricholoma terreum caused these effects on mast cells via an antigen which is absent in other fungi.

CONCLUSIONS: Inhibition of dural mast cell degranulation by black cumin seeds showed that black cumin may probably reveal analgesic, antihistaminic and anti-inflammatory effects by stabilizing mast cells. Black cumin seeds may prevent neurogenic inflammation may be responsible for migraine pathophysiology by stabilizing dural mast cells. However, this needs to be further investigated.

PC116

Investigation of Plasma PTX-3, IL-6 and CRP Levels in Rat Traumatic Brain Injury

Melek Tunc Ata, Günfer Turgut, Mukaddes Mergen Dalyanoğlu, Sebahat Turgut

Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey

AIM: The prevalence and high cost of traumatic brain injury (TBI) increases with each passing day. Therefore, the severity of disease and the early diagnosis is very important in order to define the disease. The purpose of this study is to research the levels of PTX-3, IL-6 and CRP on the rats with TBI.

METHODS: During our research period, 8 months old (200-250 g) twenty eight Wistar albino male rats were used for testing. Before the implementation of traumatic brain injury, cardiac blood samples were taken from each rat. TBI was implemented to all animals under deep anesthesia with weight-drop method. After TBI, the rats were grouped into 4 groups; in order to take cardiac blood samples in 1st, 3rd, 5th and 7th hours. After that, the levels of PTX-3, IL-6 and CRP in plasma of the blood samples taken from each rat were measured by ELISA method. The results were evaluated with SPSS 17.0 software program by using Mann-Whitney U, Kruskal-Wallis, Wilcoxon and pearson correlation tests.

RESULTS: No significant difference was seen in PTX-3, IL-6 and CRP levels among these four groups as a finding of these experiments. It was observed that CRP levels in 7th hour group was statistically significantly different according to before and after the damage. In addition, the positive correlation was found between the CRP and PTX-3 levels after the damage.

CONCLUSIONS: The CRP level in blood sample, which is taken at 7th hour, increased, on the other hand the PTX-3 and IL-6 levels did not have a significant difference according to different hours of TBI. The present study showed that CRP is a more sensitive biomarker than PTX-3 and IL-6 in determination of early brain injury.

PC117

The Effects of Sirtuin 1 and Oxidative Stress on Oligodendrocyte Death in Cuprizone-induced Model of Demyelination

Veysel Haktan Özacmak¹, Hale Sayan Özacmak¹, Figen Barut²

¹Department of Physiology, Medical School, Bülent Ecevit University, Zonguldak, Turkey
²Department of Medical Pathology, Medical School, Bülent Ecevit University, Zonguldak, Turkey

AIM: Cuprizone (CPZ)-induced demyelination in rodents has been widely used as a model for multiple sclerosis (MS). The copper chelator cuprizone induces selective oligodendrocyte death, followed by myelin disruption, astroglialism and microglia- and macrophage activation. Sirtuins are NAD-dependent deacetylases that counter aging and have a wide spectrum of metabolic and stress-tolerance functions. Of the seven mammalian sirtuins, the SIR2 ortholog SIRT1 deacetylates numerous regulatory proteins, such as PGC-1α, p53, FOXO, HSF and HIF-2α to trigger resistance to metabolic, oxidative, heat and hypoxic stress. SIRT1 has been directly implicated in neuronal protection against ischemia. SIRT1 has also been linked to neurodegenerative diseases, such as Huntington’s disease and Alzheimer’s disease, and MS. The present study aims to determine the
relationship between the tissue oxidative stress and SIRT-1 level in rat model of MS.

METHODS: In the current study, the rat model of chronic demyelination was constructed by continuous ingestion of 0.6% cuprizone for 2 weeks. Animals were divided into two groups each including 10 rats: CP2 group receiving CP2 for 14 days at 21st day of postnatal period; sham control group fed with standard pellet. Expressions of nitrotyrosine, NOGO A, and SIRT-1 as well as the tissue contents of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured via immunohistochemical and spectrophotometric techniques, respectively.

RESULTS: Tissue levels of lipid peroxidation and reduced glutathione in both groups were statistically indifferent (p>0.01) while SOD activity in CP2 group was three times more than that in control (p<0.01). Demyelination plates at 1st and 2nd degree of severity were observed in CP2 group, whereas normal myelin structures were evident in control. Intense increase in Nogo-A expression (particularly around plates) was evident in CP2 group compared to control. No expression of 3-Nitrotyrosine was detected in any group, supporting biochemical findings. However, level of Sirt-1 was significantly reduced in CP2 group when compared with control.

CONCLUSIONS: MS may not induce oxidative stress in central nervous system of rats but trigger a significant decrease in SIRT-1 with elevated SOD level. The present study was funded by a project of Bülent Ecevit University (BAP 2012-20-00-25).

PC118
Effects of Neurotrophic Factors CDNF and MANF on Brain Plasticity and Repair After Brain Ischemia
Ahmet Burak Çağlayan1, Mustafa Çağlar Beker1, Serdar Altunay1, Arman Dalay1, Ayşen Dilden1, Elif Sertel1, Taha Keleştemur1, Esra Yaşın1, Ülkan Kılıç2, Mart Saarma3, Ertuğrul Kılıç1
1Department of Physiology, İstanbul Medipol University, Faculty of Medicine, İstanbul, Turkey
2Department of Medical Biology, İstanbul Medipol University, Faculty of Medicine, İstanbul, Turkey
3Institute of Biotechnology, University of Helsinki, Helsinki, Finland

AIM: Neurotrophic factors play essential roles in development of neurons and the maintenance of neuronal synaptic function. Decrease or absence of neurotrophic factor levels play important roles in pathobiology of several neurodegenerative disorders. In this study, effects of MANF (Mesencephalic Astrocyte-Derived Neurotrophic Factor) and CDNF (Cerebral Dopamine Neurotrophic Factor) neurotrophic factors which differ from the other known neurodegenerative factors on cellular survival, apoptotic cell death, neurogenesis, gliogenesis, atrophy in striatum and corpus callosum and signal transduction pathways were investigated.

METHODS: 8-12 weeks old male C57Bl/6 mice were anesthetized with 1% isoflurane (30% O2, remainder N2O) and submitted to 30 minutes of middle cerebral artery occlusion, and reperfused for Day 3, 14, 28 and 55. Miniosmotic pumps that were randomly filled with vehicle (0.01 M PBS) or MANF or CDNF (for both 1 mg/kg/day diluted in 0.01 M PBS) were placed into the left lateral ventricle (n = 10 animals/group). These miniosmotic pumps were left in place during reperfusion. Apoptotic cell death, neurogenesis, gliogenesis, and atrophy were identified by immunofluorescence staining on frozen brain slice and protein expressions were measured with Western blot.

RESULTS: In this study, MANF and CDNF treatments were shown to decrease DNA fragmentation, trigger neurogenesis and gliogenesis, alleviate glial scar formation and atrophy in striatum and corpus callosum in long term compared to the control group. Increased eNOS and decreased iNOS and time dependent changes in the activation of p38 and p21 were observed.

CONCLUSIONS: The obtained results demonstrated that MANF and CDNF treatments exerted their effects on programmed cell death, neurogenesis and gliogenesis after brain ischemia through increased eNOS and decreased iNOS, and through p38 and p21 proteins. To this end, these results will contribute to new targets and/or treatments that can direct brain ischemia treatments.

This study was supported by TUBITAK 114S402 project.
The Protective Effect of Central Exogenous Neuropeptide-S on Parkinson’s Disease

Mehmet Bülbül1, Osman Sinen1, V. Nimet İzgüt Uysal1, Özmel Özsoy1, Gökhan Akköylunlu2, Hande Parlak1, Ayşe Özkam1, Ilknur Birsen3, Ayşen Akgun1
1Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
2Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
3Inonu University, Faculty of Medicine, Department of Medical Biochemistry, Malatya, Turkey

AIM: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons from the substantia nigra (SN). Its major clinical symptoms are tremor, rigidity, bradykinesia and postural instability. Neuropeptide-S (NPS), a neuropeptide, has been shown to protect neurons against apoptosis by decreasing lipid peroxidation in certain brain regions mediating locomotor activity, autonomic network and behavior. NPSR was shown to be expressed in several brain regions mediating locomotor activity, autonomic network and behavior. NPSR was shown to be expressed in SN, while NPS has been reported to protect neurons against apoptosis by decreasing lipid peroxidation in certain brain regions. The aim of the present study is to investigate the effect of chronic central exogenous NPS on reduced nigral dopaminergic cell population and disturbed motor functions in mouse experimental PD model.

METHODS: In this study, 3-month old male C57BL/6 mice were randomly divided into 3 groups as: Control, MPTP-induced PD and chronic central exogenous NPS-treated PD. MPTP was intraperitoneally injected at dose of 4x20mg/kg at 12-hr intervals. Intracerebroventricular NPS administration started on day of MPTP treatment and was performed for 7 days at dose of 0.1 nmol. In all groups, motor activity tests were performed before and on 7th day of the PD model. At the end of the 7-day period, brains were collected and tyrosine hydroxylase (TH) immunoreactive cells in SN and ventral tegmental area (VTA) were analyzed by immunohistochemistry.

RESULTS: Compared to control, MPTP decreased total locomotor activity and time exhibited on the rotating mill at 20, 30 and 40 rpm which were significantly (p<0.05) improved following chronic central NPS treatment. Furthermore, the reduced number of TH-positive cells in SN and VTA were remarkably increased by exogenous NPS.

CONCLUSIONS: The present findings suggest that central exogenous NPS might restore MPTP-induced impaired locomotion and TH-positive cell loss through nigral NPSR. Central NPSR agonism may contribute to the novel approaches for the clinical treatment of PD.
and cerebral plasticity in an experimental Alzheimer’s disease (AD) model.

METHODS: An AD model has been demonstrated with a long-term D-galactose injection combined with ovariectomy (D-GAL+OVX). Female Wistar rats (250-340 g) were divided into two main groups as sham operated and D-GAL+OVX. D-GAL (100 mg/kg) or saline was administered by intraperitoneal injection for 6 weeks. Aerobic (AE; swimming) (1 hour/day), resistance (RE; climbing with weight on vertical ladder/8-12 sets) and combined exercises (CE; aerobic+resistance/alternately) were performed for 3 times a week for 6 weeks. Some of the rats were sedentary. Anxiety via holeboard test, Nerve Growth Factor (NGF), Brain Derived Neurotrophic Factor (BDNF), Insulin Like Growth Factor-I (IGF-I) and Amyloid Beta (Aβ) immunoreactive neurons were evaluated via immunocytochemical technique in hippocampus and cortex.

RESULTS: Freezing time was increased in OVX+D-GAL sedentary group (p<0.01) compared with sham sedentary group, and decreased back with AE (p<0.05). Increased Aβ immunocytochemical scores in hippocampus in OVX+D-GAL sedentary group (p<0.001-0.05) were decreased via RE and CE (p<0.01). Hippocampal NGF immunocytochemical scores were increased in sham AE, RE group compared to sham sedentary (p<0.05). Decreased cortex NGF immunocytochemical scores of sham operated AE (p<0.01) and CE (p<0.05) groups were elevated compared to sham sedentary group. CONCLUSIONS: RE, CE via decreasing hippocampal Aβ score, CE via improving neuroplasticity and AE via decreasing anxiety-like behaviour may have protective effects in development stage of Alzheimer’s disease.

PC123 Investigation of Oxidant/Antioxidant Balance in Alzheimer Patients

Yusuf Ekbiç, Fatma Demirkaya Milioglu, Gulşah Gündoğdu, Gulizar Varma, Hasan Herken, Vural Küçükkatay

1Department of Physiology, Pamukkale University, Faculty of Medicine, Denizli, Turkey
2Department of Analytical Chemistry, Ataturk University, Faculty of Medicine, Erzurum, Turkey
3Department of Physiology, Ataturk University, Faculty of Medicine, Erzurum, Turkey
4Department of Psychology, Pamukkale University, Faculty of Medicine, Denizli, Turkey

AIM: Alzheimer’s disease (AD) is an incurable neurodegenerative illness with progressive deterioration in cognitive functions accompanied with feelings and behavior change. Many mechanisms for neurodegeneration including oxidant stress has been presented. Harmful effects of oxidative stress is well-known and the body is protected by endogenous and exogenous antioxidants. There is tightly regulated balance between oxidants and antioxidants in the body. In our study, we aimed to investigate Total Oxidant Level (TOL), Total Antioxidant Level (TAL), and Oxidative Stress Index (OSI) in serum of Alzheimer patients and compared those parameters with healthy groups.

METHODS: The study was performed on AD (32) and healthy volunteers (31). Cognitive function of individuals in the study was evaluated with the Mini-Mental State Examination. The average age and gender of the patient and control groups has been noted to be close to each other. 8 ml of blood was taken from individuals and the serum TOL and TAL levels were evaluated by using of a commercial kits. The OSI value was calculated through TOL and TAL levels.

RESULTS: The TOL value in AD group was statistically found less than that of control groups (p<0.05). There was no significant difference in TAL and OSI values between the groups. CONCLUSIONS: Our results showed that there was a statistically significant decrement in oxidative stress levels in AD group. This can be explained with some systemic diseases of individual’s in healthy control group in addition to advance age of them.

PC124 The Effects of Ethyl Pyruvate on Cognitive Function, Oxidative Stress, and Na-K ATPase Levels in Vascular Dementia Model

Hale Savan Özçaşmak, Ercan Gencer, Veyes Haktan Özçaşmak

Bülent Ecevit University Medical School, Department of Physiology, Zonguldak, Turkey

AIM: Vascular dementia, the second most common type of dementia, is mainly caused by alteration of blood supply to the brain. Chronic cerebral hypoperfusion (CCH) has been implicated to cause neurodegeneration and cognitive impairment through multiple mechanisms, including induction of oxidative stress, amyloid-β accumulation, tau hyperphosphorylation, neuronal loss, and neuro-inflammation. Ethyl pyruvate (EP) has been shown to confer protective effects in various disease models. For example, EP administration improved survival in mice with established lethal sepsis and systemic inflammation and diminished ischemia-induced myocardial injury and infarct volumes in postischemic brain. The present study was, therefore, designed to evaluate the effects of EP treatment on the oxidative stress status by measuring the levels of malondialdehyde (MDA) and reduced glutathione (GSH), Na-K ATPase levels and cognitive function in chronic cerebral hypoperfusion-induced neurodegeneration in two vessels occluded rats.

METHODS: Wistar Albino male rats were randomly divided into three groups each including 10 animals (sham control, CCH, and CCH with EP treatment). CCH was induced by bilateral carotid artery occlusion in rats. EP was given to rats daily (i.p., 10 mg/kg) for 15 days. 15 days later, contents of Na-K ATPase,MDA, and GSH were measured by methods of ELISA and spectrophotometry, respectively. For evaluation of cognitive function, Morris water maze was applied. Hippocampal memory was evaluated by escape latency, which is the time it takes to find hidden platform.

RESULTS: MDA content in CCH group was more than those in other groups after 15 days later (p<0.05). Treatment with EP significantly reduced MDA content compared to that of CCH group(p<0.05). Levels of Na-K ATPase and GSH in all groups were indifferent from each other. Escape latency time in treatment group was significantly less than that in CCH group.

CONCLUSIONS: These results may suggest that EP treatment improve cognitive function by reducing oxidative stress in chronic cerebral hypoperfusion.
Evaluation of Spatial Learning Performance in Selenium Supplemented Rats
Burak Tan, Erkan Babur, Ebru Erol, Cem Süer, Nurcan Dursun
Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey

AIM: In our previous work we have shown that hypothyroidism develops hippocampal function deterioration and this deterioration improves with selenium supplementation. In this study, selenium (Se) deficiency and Se supplementation in rats learning and memory functions was evaluated.

METHODS: Male Wistar rats were divided into 4 groups; 1. Control, 2. Se supplementation (10 ppm, Se+10), 3. Se supplementation (20 ppm, Se+20), 4. Se deficiency (0.7 ppm, Se(-)). The rats were fed diets containing different dietary selenium. Learning and memory performance of rats evaluated in the Morris water maze and behaviour of animals during trial was recorded with NOLDUS monitoring system.

RESULTS: It was found a significant difference between the values of the hippocampal selenium among groups. Se supplementation (given in particular 20 ppm) and Se deficiency has adversely affected the learning functions. In Se(-) group, distance moved to find the platform on 2. and 3. days, escape latency on 2., 3. and 4. days significantly increased compared to the control group. The mean distance to platform of Se(-) group on 2., 3. and 4. days significantly increased compared to the control group. Se+20 group remained the least time in the target quadrant and this value is significantly different from the other groups.

CONCLUSIONS: Selenium deficiency impaired hippocampal functions significantly, in selenium supplemented group, in contrast to increase in hippocampal function, it was decreased. We believe that excess or deficiency of selenium adversely affects synaptic plasticity formation by affecting antioxidant stress. Selenium supplementation in pathological conditions, it has a significantly curative effect in neuronal cells but it could adversely affect cell functions in physiological conditions.

The Effect of MK-801 and Dexmedetomidine on Spatial Learning and Memory
Deniz Barç, Kübra Akıllıoğlu, Mehmet Bertan Yılmaz
1Department of Medical Biology, Çukurova University, Faculty of Medicine, Adana, Turkey
2Department of Medical Physiology, Çukurova University, Faculty of Medicine, Adana, Turkey

AIM: The negative effects of N-methyl-D-aspartate receptor (NMDAR) antagonist, MK-801, on learning and memory are well known. It has recently been argued that alpha-2 adrenergic receptor agonist, dexmedetomidine affects learning and memory. In this study was evaluated the effects of the NMDAR system in combination with the alpha-2 adrenergic receptor system on spatial learning and memory.

METHODS: In this study, the spatial learning and memory skills of mice were tested using the Morris water maze. The mice were eight to ten week old adult male Balb/c mice. Before the Morris water maze testing, MK-801 (0.25 mg/kg), dexmedetomidine (10 mcg/kg) and MK-801+ dexmedetomidine (0.25 mg/kg+10 mcg/kg) were given to the experimental group intraperitoneal twice a day for a week. The control group received 0.9% NaCl (0.1 ml/10g body weight) in the same method. The data was analyzed by using Statistical Package for the Social Sciences (SPSS) program and the repeated measurements were analyzed by ANOVA.

RESULTS: In the Morris water maze test, MK-801 caused a significantly increase in time taken to reach the platform, compared to the control group, on the second, third, fourth and fifth days (respectively p<0.05, p<0.05, p<0.001, p<0.001), while causing a decrease in time to stay on the target quadrant. Groups that were treated with dexmedetomidine and MK-801+dexmedetomidine had no significant difference in the time taken to reach the platform and the time spent on the target quadrant. MK-801+dexmedetomidine caused a significant decrease in time taken to reach the platform, compared to the MK-801 group, while causing a increase in time to stay on the target quadrant (p<0.05).

CONCLUSIONS: According to the findings, the negative effects of MK-801 on spatial learning and memory may be recovered with Dexmedetomidine application. NMDAR system and alpha-2 adrenergic receptor system may play a role on spatial learning and memory performance.

Effects of Coenzyme Q10 Supplementation on Doxorubicin Treatment-induced Cognitive Dysfunction in Rats
Nilsel Okudan, Muaz Belviranlı, Tuğba Sezer
Division of Sports Physiology, Department of Physiology, Medical Faculty of Selçuk University, Konya, Turkey

AIM: Doxorubicin is an anthracycline derivative antibiotic which is commonly used in various cancer therapies. Adverse effects of anti-cancer agents are a major problem. It has been specified that the deterioration of cognitive functions can be observed particularly in patients with breast cancer after the chemotherapy. It is believed that the doxorubicin derived toxicity can be due to the oxidative stress. CoenzymeQ10 is a fat soluble vitamin, located on the inner phospholipid layer of the cell membrane. It is known as a strong antioxidant. In this study, we aimed to examine whether coenzymeQ10 supplementation had protective role doxorubicin induced cognitive dysfunction in rats and its relation with oxidative stress markers.

METHODS: The ethical approval was obtained from the Local Ethics Committee of Selçuk University. A total of 32 female Wistar albino rats were divided into four groups: Control (n=6), CoenzymeQ10 (n=6), Doxorubicin (n=10) and Doxorubicin-CoenzymeQ10 (n=10). From the first day of the study, CoenzymeQ10 treated groups were given 200 mg/kg CoenzymeQ10 via oral gavage for 21 days. On the 7th and 14th day of study, single dose of 4 mg/kg doxorubicin (totally 8mg/kg) were injected intraperitoneally. From the 21st day of study, open field and elevated plus maze tests were applied. At the end of the study brain samples were collected under anesthesia and oxidative stress markers were analyzed.

RESULTS: In the doxorubicin group locomotor activity was decreased, anxiety level was increased compared to the control group (p<0.05). There was no significant difference among the Doxorubicin-CoenzymeQ10, control and CoenzymeQ10 groups (p>0.05). MDA and PC levels tended to increase and SOD activity tended to decrease in the doxorubicin group (p<0.05). CoenzymeQ10 supplementation led these values to be similar to the control group (p>0.05).CONCLUSIONS: CoenzymeQ10 supplementation may improve doxorubicin-induced cognitive dysfunction independent from the oxidant system in rats.
Investigation of Anxiolytic Effects of Meprobamate for Pharmaceuticals Determination of a New Derivative of Mepronarilamate Composes

Süle Aydın Turkoğlu1, Hayriye Orallar2, Özünur Demir Ordu3, Ayhan Çetinkaya4, Hamit Coşkun4, Erol Ayaz4
1Abant Izzet Baysal University Faculty of Medicine, Department of Neurology, Bolu, Turkey
2Abant Izzet Baysal University Faculty of Agriculture and Natural Science, Poultry Science, Bolu, Turkey
3Abant Izzet Baysal University Faculty Of Arts And Sciences, Department Of Chemistry, Bolu, Turkey
4Düzce University Faculty of Medicine, Department of Physiology, Düzce, Turkey
5Abant Izzet Baysal University Faculty Of Arts And Sciences, Department of Psychology, Bolu, Turkey
6Abant Izzet Baysal University Faculty of Medicine Department of Parasitology, Bolu, Turkey

AIM: Compounds containing carbamate group are known to have anxiolytic effects. The aim of this study was to investigate the anxiolytic effects of newly synthesized 11 different meprobamate derivatives.

METHODS: Male wistar albino rats (4-6 months old) was used in this study. 11 different meprobamate derivatives were synthesized in AİBU department of chemistry for this study. These derivatives were named as 500, 501,502,503,504,505,506, 507,508,509,513. Single dose was selected for all the derivatives as 50 mg/kg. Animals were divided into three main groups. The first group was called experimental group that was applied separately on 11 new derivatives of meprobamate. Second Group was called positive control group and received diazepam (1mg/kg). Third Group which received DMSO was called negative control group. 30 min before each test, the derivatives were applied intraperitoneally (50 mg/kg). After 30 minutes, the anxiolytic effect of the derivatives was determined by open field and elevated plus maze tests.

RESULTS: Firstly, in the open field test 505,501,508 and diazepam administrated rats took more total distance than control groups rats (p<0.05). 505, 508,506,507,500 and diazepam administrated rats spend more time at the side than control groups (p<0.05). 505,513,506,509,502 and diazepam administrated rats took more total distance than control groups (p<0.05). 506,503, 505,501,509, 508,513 and diazepam administrated rats spent less time at closed arm than control groups (p<0.05). 504 and 507 administrated rats spent more time at closed arm than control groups (p<0.05). 506,503,501 administrated rats spend more time at open arm than diazepam administrated groups and control groups (p<0.05).

CONCLUSIONS: In this study, 505,501,509,508,513 and 501 substances can be said effective in open field also it reduced anxiety which is similar to diazepam (p<0.05). 506,503,505, 501,509,508, 513 substances can be said effective in elevated plus maze. These substance may be effective in closed arm and they reduces anxiety. These newly synthesised agents were planned to be used in further phase studies more comprehensively for medical use in the treatment of anxiety disorders.

The Effects of Leptin Administration to Amygdala Region on Anxiety, Depression and Learning Behaviors: Change in Serotonin and Glutamate Levels

Hayriye Orallar1, Fatma Pehlivan Karakaş2, Bihter Gökçe Bozat3, Hamit Coşkun4
1Department of Poultry Science&Technology, Abant Izzet Baysal University, Bolu, Turkey
2Department of Field Crops, Abant Izzet Baysal University, Bolu, Turkey
3Department of Biology, Abant Izzet Baysal University, Bolu, Turkey
4Department of Psychology, Abant Izzet Baysal University, Bolu, Turkey

AIM: Leptin is a hormone secreted by adipose tissue and involved in modulation of food intake. In addition to these functions, it plays a role in various physiological events such as anxiety, depression and learning. The aim of this study was the investigation of effects of leptin administration to amygdala on anxiety, depression and learning behaviors. In addition, changing of serotonin and glutamate neurotransmitter levels interaction between behavior.

METHODS: Present study used Wistar albino rats. Animals were separated 3 groups such as low dose (0.1µg/kg) and high dose (1µg/kg) leptin and saline (control) intraamigdalar administration group. In this study, we planned two procedures. Firstly, a special cannula was implanted into amygdala region of rats and leptin and saline were injected in this region by infusion pump. After leptin injections, behavioral tests were performed. In the second study, the extracellular fluid was collected by microdialysis from the amygdala region. The levels of serotonin and glutamate were measured by HPLC.

RESULTS: The first experiment demonstrated that in the open field, low dose leptin administrated rats spent more time at the center (F(2,57)= 3.97 p=0.02), showed more zone transition than control ones (F(2,57)= 3.22 p=0.04). In the elevated plus maze, high and low doses leptin administrated rats spent more time in the open arms (F(2,55)= 6.77 p=0.002) and also high dose leptin injected rats showed more frequency of entering open arms (F(2,55)= 9.97 p=0.001). In Porsolt test, low dose leptin administrated rats showed high mobility in center than sham group (F(2,55)= 4.30 p=0.02). In the Morris water maze, low dose leptin administrated rats spent more time over the platform (F(2,45)= 3.50 p=0.04). The second experiment demonstrated that serotonin and glutamate levels increased in the first hour after the leptin injections (p<0.05).

CONCLUSIONS: Present study suggests that both high and low leptin administration to rat brain playsa role as anxiolytic and anti-depression agents in rats.
have been used in herbal medicine and health food for the thousand years. L. barbarum fruits have polysaccharides which have many beneficial effects for humans such as ocular neuroprotective, antioxidant, immunomodulator, hepatic protection and antitumor effects. In the present study, the aim was to investigate the effects of the L. barbarum polysaccharides (LBP) on learning behavior in ovariectomized young female rats (two months age) using the Morris water maze test.

METHODS: Two weeks after ovariectomy applications, rats were divided into five groups: control (distile water 3 mL/kg, gavage, per day), low dose LBP (20 mg/kg, 3 mL/kg, gavage, per day), high dose LBP (200 mg/kg, 3 mL/kg, gavage, per day), estrogen (1 mg/kg, 3 mL/kg, gavage, per day) and donepezil (1 mg/kg, 3 mL/kg, gavage, per day) and two subgroup within each the group: sham (pseudo ovariectomized rat) and ovariectomized groups. After all treatments were applied for thirty consecutive days, behavioral test was applied. Blood serum samples of all rats were collected and levels of antioxidant enzymes (SOD, CAT, GPX, MDA and E2) of the samples were detected by ELISA method. All animals weights were measured weekly.

RESULTS: The findings of the present experiment demonstrated that platform finding time and travelled distance of the LBP administered ovariectomized groups were less than estrogen and donepezil administered groups.

CONCLUSIONS: In conclusion, LBP enhances the learning performance and antioxidant enzyme activity of ovariectomized female rats.

PC131
Evaluation of Cognitive Decline in Rheumatoid Arthritis: Predictive Value of Joint Destruction and Disease Severity
Derya Güzel1, Sinem Sağ1, Mustafa Serdar Sağ1, İbrahim Tekeoğlu1, Ayhan Kamani1, Kemal Nas1
1Sakarya University, Medical Faculty, Department of Physiology, Sakarya, Turkey
2Sakarya University, Medical Faculty, Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Sakarya, Turkey
3Sakarya Training & Research Hospital, Department of Physical Medicine and Rehabilitation, Sakarya, Turkey

AIM: Cognitive process of deterioration in Rheumatoid Arthritis (RA) are previously investigated in a few studies and to the best of our knowledge there have been no study about the correlation between radiological progression and cognitive decline in patients diagnosed with RA. The aim of the present study is to indicate the correlation between joint destruction and cognitive functions in RA.

METHODS: This cross-sectional study included forty five patients and forty healthy controls. Predictors of radiological progression (≥0.5 the modified Sharp/van der Heijde scores- MTSs), disease activity scores (DAS-28 and DAS-44) were evaluated in patients with RA. Mini Mental State Examination (MMSEs) and Hospital Anxiety Depression Scale (HADS) were evaluated and the results were compared between patients and control groups to determinate cognitive functions.

RESULTS: There was no statistically significant difference among groups in terms of age, sex and educational parameters (p>0.05). There was a statistically significant difference between groups in terms of MMSE scores (p<0.01). There weren’t significant differences in terms of anxiety levels between both groups. Depression score was also correlated with DAS-44 (p<0.05). No relationship was found between disease duration, RF levels, anti-CCP levels and the cognitive function tests.

CONCLUSIONS: Although the brain has highly selective permeability that separates the circulating blood, inflammatory disorders such as RA cause cognitive problems including inability to concentrate, fuzzy and sluggish thought process via released mediators. The data obtained indicate that exposure to inflammatory mediators during long standing RA may lead to deterioration on central nervous system as long as affecting joints. Cognitive deterioration was correlated with disease severity and joint destruction. Thus, the radiographic joint destruction can be a positive predictor of reflecting the extent of neuronal damage and cognitive deterioration during this chronic process in rheumatoid arthritis.

PC132
Investigation of Selenium Effect on Long-term Potentiation
Ercan Babur, Ebru Erol, Cem Suer, Burak Tan, Nurcan Dursun
Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey

AIM: Selenium has been recognized as a vital trace element of our diet with numerous beneficial effects on health. Se is required for the expression of Se-dependent enzymes such as glutathione peroxidase, thioredoxin reductase, iodothyronine deiodinases which are essential for several known major metabolic pathways, including thyroid hormone metabolism and antioxidant defense systems. In this study, we investigated the effect of selenium deficiency and excess in learning and memory function in rats.

METHODS: The Wistar male rats were divided into 4 groups; 1- Control, 2-Se supplement group (10ppm Se), 3-Se supplement group (20ppm Se), 4-Se deficient group (0.07ppm Se). For the evaluation of long-term potentiation, high frequency stimulus giving the perforant path and the field potentials of dentate gyrus was recorded. After HFS 55-60 min, excitatory postsynaptic (EPSP) and population spike (PS) records analysis were evaluated and commented on the significance of the ANOVA test. In the plasma of animals, and the hippocampus tissue Se levels were measured.

RESULTS: Significant differences were found between the groups of the hippocampus Se values. Induction and maintenance period of population spike (PS) -Long Term Potentiation size were found lower than the control group. Excitatory postsynaptic potential (EPSP) of Se +10ppm group decreased compared with the control group.

CONCLUSIONS: Long-term potentiation was impaired in Se deficient group. This impairment are thought to be due to reduction of antioxidant and deiodinase enzymes activity in hippocampus. We also observed reduction of hippocampal functions in Se supplement group. This shows that excess of Se affects the healthy neuronne- gatively.
PC133

Comparing the Short-term Effect of Drinking Caffeinated Coffee on Hand Skill Rate Performance Ability Due to its Hotness, Smelling and Caffeine Ingredient

Nimet Uray Gündoğan*, A. Şebnem İlhan¹, Ersin Öğüş¹, Anıl Cenk Olşen¹, Buse Gürcan¹, Doğancan Özer¹, Mine Koru¹, Nazenin Durak¹, Duygu Uğur¹

¹Başkent University, Faculty of Medicine, Department of Physiology, Ankara, Turkey

AIM: Fatigue is a general symptom of neuromuscular diseases and the study was to investigate whether FTT could be used in the assessment of CF alone or not.

METHODS: The study group will consist of thirty female children and adolescents between the ages of 3 and 15 who are diagnosed with classic CAH who were followed at the Pediatric Endocrinology Department of x and y Universities Medical Faculty Hospital. The control group, 30 healthy children and adolescents equalized with CAH patients in terms of age and gender will be taken. All patients and controls were examined for psychiatric disorders by clinicians.

RESULTS: Mean tapping rate was lower in CF group (n=44) compared with control group (n=58) (p<0.05). Non-linear temporal changes occurred during the task and the performance patterns were found to be different in certain periods of the task. The boundaries of these periods were defined objectively by the numerical method of “sum of square of the difference”. There were two distinguished points in both groups indicating three different sub-divisions in the task. Initial sub-division lasted shorter, fluctuations and intertap intervals increased significantly in three sub-divisions of CF group (p<0.05, p<0.001 vs p<0.001, respectively).

CONCLUSIONS: The results of this preliminary study suggest that the variations in temporal behavior of FTT may be used as an objective measure in the assessment of CF.

PC134

The Role of Finger Tapping Task in the Assessment of Central Fatigue

Levía Aydem¹, Erhan Kızıltan¹, Ersin Öğüş¹, Bahadir Azizagaoglu², Arda Büyükkaraman², Selen Doğan², Gizem Ertürk³, Cansel Kus³

¹Başkent University Medical Faculty, Physiology Department, Ankara, Turkey

²Başkent University Medical Faculty, Biostatistics Department, Ankara, Turkey

³Başkent University Medical Faculty, Undergraduate Student, Ankara, Turkey

AIM: Fatigue is a general symptom of neuromuscular diseases and is described as progressive decrease observed in voluntary muscle activity during exercise. For formation of fatigue, 2 distinct levels of implications are mentioned as peripheral and central fatigue (CF). In the studies aiming the assessment of CF several technological methods have been used. Some studies also include the simple test of finger-tapping task (FTT) as additional method. The aim of this study was to investigate whether FTT could be used in the assessment of CF alone or not.

METHODS: Right-handed, male, first and second year students who have no declared neuromuscular disorders from Başkent University Faculty of Medicine participated in the study. CF was induced by “short-lasting repetitive maximal-rate activity model” and the assessment was made on FTT of 20 s. Task performances were analyzed by linear regression, statistically. Independent groups were compared by “Student’s t-test” in the case of satisfying parametric test’s assumptions otherwise by “Mann-Whitney U Test”. α=0.05 was set as level of significance.

RESULTS: Mean tapping rate was lower in CF group (n=44) compared with control group (n=58) (p<0.05). Non-linear temporal changes occurred during the task and the performance patterns were found to be different in certain periods of the task. The boundaries of these periods were defined objectively by the numerical method of “sum of square of the difference”. There were two distinguished points in both groups indicating three different sub-divisions in the task. Initial sub-division lasted shorter, fluctuations and intertap intervals increased significantly in three sub-divisions of CF group (p<0.05, p<0.001 vs p<0.001, respectively).

CONCLUSIONS: The results of this preliminary study suggest that the variations in temporal behavior of FTT may be used as an objective measure in the assessment of CF.
Patients and control groups filled Autism Behavior Checklist and semistructured sociodemographic form that evaluated the gender, age, pregnancy and birth complications, history of mothers’ cigarette and alcohol use. 2D:4D ratios were measured in both of control and CAH groups.

RESULTS: CAH group right and left hand 2D:4D ratios were statistically lower compared to controls and also lower 2D:4D ratios had association with high ABC scores. When compared with control group, ABC scores were significantly higher in CAH group. In KAH group there was a positive correlation between 2D:4D ratios and ABC scores.

CONCLUSIONS: The present findings suggest that androgen may have an effect on low 2D:4D ratios and high ASD symptoms. Further research with a large sample is needed in this field.

PC136
Laboratory Animal Tracking in Behavioral Experiments: An Alternative Low Cost Solution
Erhan Kızıltan, Leyla Aydın
Başkent University Medical Faculty, Department of Physiology, Ankara, Turkey

AIM: Behavioral animal experiments are widely used methods in neurophysiological and neuropharmacological studies. Animal tracking and analysis in such experiments are performed by either manually or automatically. There are several commercial tools permitting accurate automatic analysis within short time. However, relatively higher initial cost of these tools may prevent promising low budgeted projects to be initiated. In order to introduce alternative shareware solution for such a problem we developed our own system and the results were discussed in accordance with the reliability and the validity aspects.

METHODS: The system includes the software program which analyses set of image frames, the arena where the animal moves and standard webcam. The software extracts the coordinates of animal’s instantaneous location, calculates previously defined experimental measures, displays on the screen and saves permanently for further analysis. The system was tested for two different arenas namely, Morris Water Maze (MWM) and Open Field (OF). The results were compared with that of manual method. Cronbach’s alpha test was used for the internal consistency of the data sets. Accuracy of the results was evaluated by paired samples t-test and Pearson correlation. Statistical level of significance was set to p<0.01.

RESULTS: Video files of 25s and 138s were recorded during MWM and OF tests, respectively. Instantaneous travelled distances (ITD) that the animal moved within the two successive picture’s time were computed by both method and, were compared by paired samples t-test. Statistical analysis didn’t reveal any significant difference between the methods (r=0.954, p=0.792 for MWM test and r=0.996, p=0.024 for OF test).

CONCLUSIONS: The results suggest that the system consists of reliable and valid software algorithm for locating the instantaneous coordinates of experimental animal and may be evaluated as an high resolution low cost tool for the behavioral experiments. Therefore, we believe that this study may contribute to initiate low budgeted projects.

PC137
The Effect of P2X7 Receptor Antagonist A-438079 on Penicillin-induced Epileptiform Activity
Gökhan Arslan¹, Süleyman Emre Kocacan², Mustafa Ayyıldız³, Emil Rayzey⁴, Bahattin Avci⁴, Erdal Ağar⁵
¹Cumhuriyet University Medical Faculty, Department of Physiology, Sivas, Turkey
²Ondokuz Mayıs University Medical Faculty, Department of Physiology, Samsun, Turkey
³Ondokuz Mayıs University Medical Faculty, Department of Medical Biochemistry, Turkey

AIM: P2X7 receptor has been recently discovered member of the P2X receptor family, which is one of the three subgroups of purinergic receptors. It is present in almost all cells in the brain. The aim of this study was to determine the role of P2X7 receptor on penicillin induced epileptiform activity.

METHODS: 16-18 weeks of age male Wistar rats (n=35) were anesthetized with 1,25 mg/kg urethane and fixed to the stereotactic frame. Bipolar electrode was placed with surgery in occipitofrontal direction and was connected to the Powerlab data acquisition unit. Then, two more holes were drilled for intacortical (i.c.) and intracerebroventricular (i.c.v.) injections. Epileptic seizure was created with the injection of Penicillin-G potassium (i.c.) and interstitial spike activities were observed through the Chart-7 software. A-438079 (5, 10, 20, 40 µg; i.c.v.) was administered after 30 minutes from beginning the spike activity and the results were analysed.

RESULTS: A-438079, a selective antagonist of the P2X7 receptor, did not change the spike frequency at a dose of 5 µg when compared to the control group (p>0.05). On the other hand, the means of the spike frequency were decreased at a dose of 10, 20, 40 µg in the 100th (p<0.05), 60th (p<0.01) and 60th (p<0.01) minutes after A-438079 injection, respectively. There was no significant difference in the amplitudes between groups.

CONCLUSIONS: Releasing of ATP from neurons and neuroglia, activates the P2X7 receptor and causes calcium influx into the cells. These lead to increase the spike wave discharges, the exacerbation of seizures and neuronal deaths. In the present study, the suppression of the P2X7 receptor decreased the penicillin-induced spike wave discharges. After this stage, the effects of P2X7 receptors in the brain will be studied from a biochemical point. This study is supported by TUBITAK (Project number: 115S361)

PC138
The Effect of Low Dose Memantine on Epileptic Activity in WAG/Rij Rats
Elif Şen¹, Hatice Aygün², Gökhan Arslan³, Bahattin Avcı², Mustafa Ayyıldız², Erdal Ağar³
¹Ondokuz Mayıs University, Faculty of Medicine, Physiology Department, Samsun, Turkey
²Ondokuz Mayıs University, Faculty of Medicine, Biochemistry Department, Samsun, Turkey
³Gaziosmanpaşa University, Faculty of Medicine, Physiology Department, Tokat, Turkey

AIM: Absence epilepsy is a non-convulsive type of epilepsy that is characterized with spike-and-wave discharges (SWDs) on electro-
enencephalogram (EEG) and behavioral pause at the same time. A non-competitive NMDA receptor antagonist, memantine has been known anti-convulsant in various experimental epilepsy models. The aim of present study is to investigate the effect of low dose of memantine on the absence epilepsy in Wag/Rij rats, which is a genetically determined model for absence epilepsy.

METHODS: Six adult male Wag/Rij rats were used in this study. Tripolar electrodes were placed on the skull. Animals were allowed to recovery after electrode implantation for a week. After basal electrocorticogram (ECoG) activity recording at 10:00 a.m. for 3 hours, memantine, at a dose of 1mg/kg (i.p.), was administered then ECoG activity was recorded for another 3 hours.

RESULTS: Low dose of memantine significantly decreased the cluster number, cluster duration and SWDs numbers compared to basal ECoG recordings (p<0.05). However, low dose of memantine didn’t affect the mean amplitude of SWDs (p>0.05).

CONCLUSIONS: Although memantine, at dose of 1 mg/kg, was ineffective in convulsive experimental epilepsy models, it was anti-convulsant in non-convulsive genetic epilepsy model of WAG/Rij rats in this study. The pathophysiology of absence epilepsy is not exactly known. The molecular mechanism of this effect is needed to be highlighted by other analysis methods.

PC140
Effects of Leontice leontopetalum and Bongardia chrysogonum Extracts on Pentylentetrazole Kindling Epilepsy Modelin Rats
Özlem Ergül Erkeç1, Örüm Arhan2, Gülay Bulut1, Ersin Karataş1, İsmail Meral1, Fevzi Özgökçe1
1Department of Physiology, Faculty of Medicine, Yüzüncü Yıl University, Van, Turkey
2Department of Pathology, Faculty of Medicine, Yüzüncü Yıl University, Van, Turkey
3Department of Medical Biochemistry, Bezmialem Vakif University, İstanbul, Turkey
4Department of Physiology, Bezmialem Vakif University, İstanbul, Turkey
5Department of Biology, Faculty of Science, Yüzüncü Yıl University, Van, Turkey

AIM: We investigated possible antiepileptic effects of aqueous extracts of roots of Leontice leontopetalum used for treatment of epilepsy in folk medicine and roots of Bongardia chrysogonum which belongs to the same family.

METHODS: 28 Wistar albino male rats were divided into four groups; Control group (saline, 0.5 ml), pentylentetrazole group (PTZ, 35mg/kg, 18 injections; 19th injection 75mg/kg), Leontice group (200mg/kg extract p.o. + PTZ, 35mg/kg, i.p., 18 injections; 19th injection 75mg/kg, i.p.) and Bongardia group (200mg/kg extract p.o. + PTZ, 35mg/kg, i.p., 18 injections; 19th injection 75mg/kg, i.p.). Bcl-2 and Cyclin-B1 levels were assessed with Western-blot method in hippocampus and whole brain. Expression of GABAA receptor was analyzed immunohistochemically with specific antibodies.

RESULTS: Bcl-2 level was decreased whereas cyclin-B1 level was increased in whole brain and hippocampus in PTZ group compared to control significantly (p<0.01). An increase in Bcl-2 level and a decrease in cyclin-B1 level in whole brain and hippocampus were observed in plant administered groups compared to PTZ group (p<0.01). Number of GABAA positive stained cells was significantly lower in plant administered groups compared to PTZ group, both in whole brain and hippocampus (p<0.01).

CONCLUSIONS: Plant administration ameliorates alterations induced by PTZ administration. Therefore, we suggest that aqueous extract of plant may exert neuroprotective effect against PTZ induced cell death.

This study was supported by YYU Scientific Research Projects Unit.
PC141
The Effects of Cichorium intybus Extract on Cerebellar Apoptosis and Oxidative Stress in Pentylenetetrazole-induced Kindling Model in Rats
Ismail Meral1, Ebru Gürel Gürevin2, Savaş Üstünova1, Murat Demirtaş1, Nilgün Öztürk1, Hulya Tuba Kyan1, Elif Ilkay Armutak1, Ibrahim Söğüt1, Özlem Ergül Erkek1
1Bezmialem Vakıf University, Faculty of Medicine, Department of Physiology, İstanbul, Turkey
2Istanbul University, Faculty of Science, Department of Biology, İstanbul, Turkey
3Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, Eskisehir, Turkey
4Istanbul University, Faculty of Veterinary Medicine, Department of Histology and Embryology, İstanbul, Turkey
5Istanbul Bilim University, Vocational School of Health Services, Department of Medical Services and Techniques, İstanbul, Turkey
6Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology, Van, Turkey

AIM: Epilepsy is among the most common neurological disorders which affects about 1% of general population. Current therapies used for epilepsy are symptomatic and have anti-convulsive rather than anti-epileptic effect. Roots of Cichorium intybus plant have been used for the traditional treatment of epilepsy in Europe as well as in Eastern Anatolia region. Pentylenetetrazol (PTZ) kindling model is widely used in antiepileptic drug discovery and has great importance in understanding the pathophysiology of epilepsy. The aim of this study is to investigate aqueous root extract of Cichorium intybus plant on cerebellar apoptosis and oxidative stress.

METHODS: Total phenolic content of the C. intybus aqueous root extract was determined by using a Folin-Ciocalteau colorimetric method. Also the determination of six phenolic acids [(Chlorogenic acid (ChA), Syringic acid (SA), Ferulic acid (FA), o-Coumaric acid (o-COU), p-Coumaric acid (p-COU), tr-Cinnamic acids (trCINI)] were achieved by using a modified Reverse phase-High pressure liquid chromatography (RP-HPLC) method. The amounts of the relevant phenolic acids were calculated by using their calibration equations.

Twenty seven male Wistar albino rats were randomly divided into 3 groups of control, epileptic and plant extract-treated (200 mg/kg, orally) epileptic group. Following PTZ kindling; endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), neuronal NOS (nNOS), caspase-3 levels were investigated by immunohistochemically and apoptotic cells were determined by TUNEL technique in cerebellum. Total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) levels were also examined biochemically. The statistical significance was established by one-way ANOVA followed by Tukey post-tests. A value of p<0.05 was considered statistically significant.

RESULTS: The extraction yield as a percentage of plant material was 14.5% (wt/wt), and total phenolic content was 83.86 ± 3.24 mg of gallic acid equivalents/g of extract. According to the HPLC analysis; FA was most abundant (45.64 µg/g), followed by ChA (42.47 µg/g), SA (21.93 µg/g), p-COU (12.12 µg/g), o-COU (10.56 µg/g), and tr-CIN (9.25 µg/g) in the extract. Although PTZ treatment increased (p<0.01) the eNOS and iNOS levels, it decreased (p<0.001) the nNOS levels in cerebellum. Cichorium intybus treatment did not change eNOS levels, but decreased (p<0.001) the iNOS and increased (p<0.001) the nNOS levels when compared to PTZ. Cichorium intybus decreased (p<0.001) the PTZ-induced increase in caspase-3 level. In the TUNEL assay, the apoptotic index results were parallel to caspase-3 levels in cerebellum. Although PTZ treatment increased the TOS (p<0.01) and OSI (p<0.05) levels, Cichorium intybus treatment decreased (p<0.05) these parameters.

CONCLUSIONS: It was concluded that Cichorium intybus plant treatment might ameliorate the PTZ-induced neurodegeneration in the cerebellum regarding to apoptosis and oxidative stress.

PC142
Anticonvulsant Effect of Ramelteon on the Seizures Induced by Pentylenetetrazole in Rats
Mukaddes Pala1, Ramazan Kozan2, Hayrullah Köse3
1Bezmialem Vakıf University Faculty of Medicine Department of Physiology, İstanbul, Turkey
2Istanbul Medeniyet University Faculty of Medicine Department of Physiology, İstanbul, Turkey
3Bezmialem Vakıf University Faculty of Medicine Department of Biophysics, İstanbul, Turkey

AIM: There are many difficulties involved with the treatment of epilepsy. Thus, there is a need for new approaches in order to control epileptic seizures. Melatonin is an endogenous hormone that is secreted from the pineal gland. Anticonvulsant effects of melatonin were shown in a variety of experimental models. Ramelteon is an agonist that acts solely on melatonin receptors. In this study, we aimed to investigate the effects of ramelteon as a melatonin agonist in PTZ-induced epilepsy in rats.

METHODS: The rats were divided into six groups. All animals were subjected to cortical electroencephalographic (EEG) recordings. The first group was the control. The second group was 60 mg/kg PTZ applied. The third group was DMSO+PTZ injected. The fourth group was given 150 mg/kg VPA+PTZ. The fifth group was given 30 mg/kg Ramelteon+PTZ. The sixth group was given Ramelteon+VPA+PTZ.

EEG traces, Racine’s convulsion stages and the time of onset of the first myoclonic jerk were compared between the groups.

RESULTS: There were significant differences between the PTZ and Ramelteon+VPA+PTZ groups in terms of the Racine’s convulsion stages, the onset of the first myoclonic jerk and the rate of the spikes in the EEG traces (p<0.001).

CONCLUSIONS: The selective melatonin receptor agonist ramelteon showed anticonvulsant properties in the PTZ model. It is necessary to elaborate which of the melatonin receptors is used by ramelteon in order to suppress epileptic seizures.

This study was supported by the Research Fund of Bezmialem Vakif University (Project No.12.2011/15)

PC143
Investigation of Possible Therapeutic and Preventive Effect of Omentin onto Absence Epilepsy
Hüsnive Bılaılı1, Bedri Selim Bened1, Ayse Kükn1, Kenan Gümüştekin1
1Department of Physiology, Abant Izzet Baysal University Faculty of Medicine, Bolu, Turkey
2Department of Histology and Embryology, Abant Izzet Baysal University Faculty of Medicine, Bolu, Turkey

AIM: Epilepsy is one of the frequently observed central nervous system disorder. Ethosuximide (ESX) is a drug of choice for the
PC144

The Effect of Maternal Deprivation on Penicillin-induced Epilepsy

Gülcin Günayilda1, Süleyman Emre Kocacan2, Hamit Özyürek3, Mehmet Emirzeoğlu4
1Department of Neuroscience, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
2Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
3Department of Neurology, Medical Park Hospital, Ankara, Turkey
4Department of Anatomy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey

AIM: Epilepsy is a neurological disorder manifested by recurrent seizures originated from abnormal electrical activity of the brain. Many epilepsy models were created specifically to reproduce particular types of epilepsy. Penicillin-induced epileptiform activity is a widely used experimental model of focal epilepsy. Maternal deprivation can be defined as loss of the care of the mother to the infant which may have intense or long continued even irreversible effects on the baby’s brain activity. The aim of this study is to investigate the effects of short-term maternal deprivation on penicillin induced epileptiform activity in rats.

METHODS: In this study, 20 male Wistar rat pups, aged 2 months were used. First group (stress group) (n=10) the rat’s puppies were separated from their mother. Second group (control group) (n=10) the rat’s puppies were not separated from their mother. The left cerebral cortex was exposed by craniotomy under urethane anesthesia (1.25 g/kg). Silver ball electrodes were placed over the cortex and connected to a data acquisition system for the recording of electrocorticography (ECoG). The epileptiform activity was induced by microinjection of penicillin G (500 IU/2.5 μl) into the left cortex.

RESULTS: The maternal deprivation did not cause any change in the mean frequency and amplitude of penicillin induced epileptiform activity (p>0.05). The mean frequency and amplitude of epileptiform activity were 39.52 ± 5.23, 38.36 ± 6.90 the number of spike/minute ± standard error of mean, 711.75 ± 88.28, 663.76 ± 75.10 spike amplitude microvolt (µV)/minute ± standard error of mean between 45th and 50th minutes after injection in the control and stress group, respectively.

CONCLUSIONS: The stress of separation from mother has no effect on the penicillin induced epileptic activity. This result needs to be supported by the biochemical analyses.

PC145

Quercetin Decreased Penicillin-induced Epileptiform Activity in Rats

Burhanettin Baysal1, Durmuş Uçar2, Faruk Bağırıcı2
1Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
2Department of Physiology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey

AIM: Epilepsy is a common chronic neurological disorder that characterized with synchronized abnormal electrical discharges. Quercetin is a flavonoid that widely present in tea, red wine, fruits and vegetables; and frequently ingested in daily diet. Studies show that quercetin has anticonvulsant effect. Also, some studies suggest that quercetin acts as proconvulsant. Moreover, these studies are performed with behavioral methods that base on observation in animal models of epilepsy. The aim of this study is to research the effect of quercetin on epileptiform activity in experimental penicillin model of epilepsy by using electrophysiological methods.

METHODS: In this study, 30 Wistar albino female rats (180-240 g) were used in five groups as following (n=6): Control group (penicillin G), vehicle group (penicillin+dimethyl sulfoxide(DMSO)), quercetin 5, 20 and 50 mg/kg groups (penicillin+quercetin 5, 20, and 50mg/kg,respectively).Animals under urethane (1.25g/kg, intraperitoneally([i.p.]) anesthesia were put into stereotaxic device. Two recording electrodes were placed into holes that drilled on skull and connected to the PowerLab data acquisition system for electrocorticogram (ECoG) recording. Another hole was used for injecting penicillin (500 IU, 2.5μl, intracortical) to induce epileptiform activity. Quercetin (and DMSO (0.4ml/kg)) was administered intraperitoneally 30 min after penicillin injection. Recording was continued 180 min after quercetin injection.

RESULTS: Compared to the control group, 5mg/kg quercetin significantly decreased frequency of epileptiform activity from 100th minute to the end of the recording (p<0.001), but it didn’t alter amplitude. Quercetin administration at dose of 20 and 50 mg/kg didn’t cause any significant change in both frequency and amplitude. Vehicle group was statistically the same as control group.

CONCLUSIONS: In previous studies conflicting results were reported about effect of quercetin on epilepsy. In the present study, it is demonstrated that 5mg/kg ([i.p.]) quercetin decreased penicillin-induced epileptiform activity. To reveal the mechanism(s) of this action of quercetin, further researches are needed.
PC146

Effects of Caffeic Acid Phenethyl Ester on Penicillin-induced Epileptiform Activity

Ramazan Koçan1, Mukaddes Pala2, Hayrullah Köse1, Enes Akyüz3,
1Bezmialem Vakıf University Faculty of Medicine Department of Biophysics, İstanbul, Turkey
2Bezmialem Vakıf University Faculty of Medicine Department of Physiology, İstanbul, Turkey
3İstanbul Medeniyet University Faculty of Medicine Department of Physiology, İstanbul, Turkey

AIM: Imbalance of brain excitatory and inhibitory processes due to different types of structural or functional alterations may cause epileptiform activities. Caffeic Acid Phenethyl Ester (CAPE) is a bioactive component of honeybee hive propolis. It exhibits antioxidant, antiinflammatory and antiproliferative properties. There is limited study concerning the effect of CAPE on epilepsy. Therefore, we investigated the effect of CAPE in experimental epilepsy both electrophysiological and biochemical on penicillin-induced epilepsy.

METHODS: Experiments were carried out on adult male Wistar albino rats. Animals were divided into five groups; Control (sham), penicillin, penicillin+CAPE 5 mg/kg, penicillin+CAPE 10 mg/kg and penicillin+DMSO groups. Epileptiform activity was induced by intracortical (i.c.) administration of penicillin (500 IU, 2 μl) and after 30 min, CAPE doses were given intraperitoneally. 24 h later, animals are decapitated for the collection of blood samples and brain tissue. We measured levels of nitric oxide and malondialdehyde or superoxide dismutase (SOD) and general glututation peroxidase (GPx-1) activity in the homogenized brain tissue; and serum S100B protein, neuron-specific enolase, NeuropeptideY (NPY) and calcineurin levels.

RESULTS: The doses of CAPE did not cause any change on the frequency or amplitude of penicillin-induced epileptiform activity. However, injection of 10 mg/kg CAPE up-regulated significantly serum protein S100B level in comparison with the penicillin group (p<0.001). It was significantly increased serum NPY level penicillin+CAPE 5 mg/kg and penicillin+CAPE 10 mg/kg and compared with the sham group. Moreover, the activity of GPx-1 in penicillin and penicillin+CAPE 5 mg/kg were higher compared to the sham group (p<0.05).

CONCLUSIONS: It was not found a significant anticonvulsant effect of CAPE in the electrophysiological study on penicillin-induced epileptiform activity. However, it caused significant changes in the biochemical parameters of brain and blood. This result was shown for the first time by electrophysiological and biochemical data the effect of CAPE on epileptic activity.

PC147

The Effect of β-Carotene on Spike Wave Discharges in Genetic Absence Epileptic WAG/Rij Rats

Gamze Dereilişkök1, Züleyha Ölgen1, Ahmet Şevki Taşkran2, Ercan Özdemir2, Sefa Gülterrük2, Gökhan Arslan1
1Düzce University, Medicine Faculty of Physiology, Bolu, Turkey
2Abant İzzet Baysal University, Faculty of Agriculture and Natural Sciences Poultry, Bolu, Turkey

AIM: β-Carotene, which is the main source of Vit A, is abundant in plants and fruits. It is a potent free radical scavenger and antioxidant chemical. The aim of this study was to determine the effect of β-Carotene, which is used as a dietary supplement. were randomly divided into 5 groups (n = 30). One week after placing the electrodes for EEG recording, animals were connected to the Powerlab data acquisition unit for observing the spontaneous seizure activities. Three hours after the EEG recording, the solvent of the β-Carotene soybean oil was applied to the control group and β-Carotene was applied to the other groups at doses of 25, 50, 100 and 200 mg/kg intraperitoneally (i.p.). EEG recording was started again after 15 min. and three more hours of recording were obtained. Seizure activities that were obtained after the drug, were analyzed by comparison with the pre-drug seizure activities.

RESULTS: Before injection of the drugs, the total number of seizures were 95 ± 12 during the three hours in all groups. The means of the percentage of seizure parameters were not change at a dose of 25 mg/kg when compared to the control group (p>0.05). β-Carotene, at doses of 50 (p<0.05), 100 (p<0.001) and 200 mg/kg (p<0.001) increased total number of seizures, total duration of seizures and total number of spike activities in a dose dependent manner. On the other hand, generalized seizures were observed in two rats at a dose of 200 mg/kg.

CONCLUSIONS: Studies demonstrated that β-Carotene reduces the reactive oxygen species and inhibits nitric oxide synthesis. Similarly, nitric oxide synthase inhibitor L-Name increases in seizures when administered to Wag/Rij rats. In the next stage of this study, β-Carotene’s role on nitric oxide pathway will be investigated.

PC148

The Effects of Nigella Sativa Extract and Chronic Exercise Application on Penicillin-induced Epilepsy Model in Mongolian Gerbils

Ayhan Çetinkaya1, Şerif Demir1, Hayriye Orallar2, Yıldırım Kayacan3, Serkan Çakır4, Arzu Yıldırım4, Ersin Beyaçık5
1Düzce University, Medicine Faculty of Physiology, Bolu, Turkey
2Abant İzzet Baysal University, Faculty of Agriculture and Natural Sciences Poultry, Bolu, Turkey
3Ondokuz Mayıs University, Yaşar Doğu Faculty of Sports Science, Samsun, Turkey
4Abant İzzet Baysal University, Faculty of Agriculture and Natural Sciences Department of Agronomy, Bolu, Turkey

AIM: The aim of this study is to investigate the effects of black cumin (Nigella sativa) extract with treadmill exercise on experimental penicillin induced epilepsy model in gerbil electrophysiologically.

METHODS: In this study 2-4 months male Mongolian gerbils were used. Animals were divided into 4 groups as; control (penicillin), control (exercise), black cumin and black cumin+ exercise group. Treadmill exercise was performed in every five days in a week for 2 months in exercise groups. 50 mg/kg dose of Nigella sativa extract were applied in every 5 days in a week for 2 months in Nigella sativa groups. After 2 months exercise and gavage application, epileptiform activity was induced by intracortically penicillin (500 IU) application. 120 minutes electrocorticography (ECoG) recording was taken and analyzed for each animal by using powerlab system. The time to onset of first epileptiform activity’s latency, spike-wave frequency and spike-wave amplitude of epileptiform activities’ data were analyzed statistically using the Mann-Whitney U test.
RESULTS: According to latency values Nigella sativa+exercise group was prolonged time to onset of first epileptic seizure when compare the other groups (p<0.05). Nigella sativa+exercise were reduced spike wave frequency from time to onset of seizure to 13th period (p<0.05). When he left to be 5 minutes long period of time records according to amplitude values, mean amplitude values of exercise group were high until 6th period, but Nigella sativa+exercise group was the lowest (p<0.05). There was no significant difference among the groups after the 6th period.

CONCLUSIONS: These findings showed that combine application of Nigella sativa and exercise retarded to latency of the time to onset of first epileptiform activity, and reduced spike wave frequency and amplitude of epileptiform activity. This suggests that exercise with consumption of Nigella sativa may be beneficial to patients with epilepsy.

PC149
Effects of Exendin-4 on Anxiety, Epileptic Seizures and Memory Retrieval in Rats
Cansu Kızıltas1, Elif Akaydın1, Alphan Şekuri1, Nilüfer Yenidünya1, Zoubida Hadid1, Güldest Süyen2
1Acıbadem University School of Medicine Year 2 Student, İstanbul, Turkey
2Acıbadem University School of Medicine Department of Physiology, İstanbul, Turkey

AIM: Exendin-4 is a long acting glucagon-like peptide-1 (GLP-1) agonist, which exerts significant effects on glucose homeostasis. GLP-1 and GLP-1 receptors are widely distributed in the central nervous system and it is suggested that GLP-1 may be involved in several brain functions. In this study, we aimed to investigate the effects of intracerebroventricularly (i.c.v.)-injected Exendin-4 on anxiety, epileptiform seizures and memory retrieval in rats.

METHODS: Rats were equipped with permanent i.c.v. cannulas under isoflurane anesthesia. First group of rats (n=21) were pretreated with Exendin-4 (0.3-1 nmol/5 μl; i.c.v.) or saline (5 μl; i.c.v.) 30 minutes before Elevated Plus Maze (EPM) test and time spent in open and closed arms were recorded. After the EPM, epileptic seizures were induced by pilocarpine (400mg/kg; i.p.) and latency to status epilepticus was recorded. Second group of rats (n=21) were subjected to 4-day acquisition trials with the hidden platform in the Morris Water Maze and were pretreated with Exendin-4 (0.3-1 nmol/5 μl; i.c.v.) or saline (5 μl; i.c.v.) 30 minutes before the probe trial. Time spent in the target quadrant, number of platform crossings and distance swim were measured.

RESULTS: Exendin-4 (0.3-1 nmol/5 μl; i.c.v.) injected 30 min before pilocarpine did not significantly affect the latency to status epilepticus. Similarly, none of the applied doses of Exendin-4 produced statistically significant differences in the time spent in the target quadrant, number of platform crossings and distance swim compared to saline- treated rats. In the EPM, Exendin-4 (1 nmol/ 5μl) significantly decreased the time spent in the closed arms (p<0.05) and increased the time spent in the open arms (p<0.01).

CONCLUSIONS: Centrally-injected Exendin-4 did not have any significant effects on epileptic seizures and memory, but exerted a significant dose-dependent anxiolytic effect.

PC150
Effect of Epigallocatechin gallate on Penicillin-induced Epileptic Activity in Rats
Seyit Ankaralı1, Recep Özcan1, Ersin Beyazçiçek2, Handan Ankaralı2
1Department of Physiology, Medical School, Düzce University, Düzce, Turkey
2Department of Biostatistics, Medical School, Düzce University, Düzce, Turkey

AIM: Purpose of this study is to investigate effects of epigallocatechin gallate (EGCG), which is one of major constituents of Green Tea, on epilepsy via experimental penicillin-induced epilepsy model in rats.

METHODS: In this study, 48 adult Wistar male rats were used. Rats were divided into 6 groups, as control (penicillin) group, only 100 mg/kg of EGCG, preseizure administration 50 and 100 mg/kg of EGCG groups and during seizure 50 and 100 mg/kg EGCG groups. Rats were anesthetized by urethane. After the left part of the bone on cortex was removed, electrodes were placed onto somatomotor area and electrocorticogram (ECoG) recording was performed. After 5 minute of basal activity recordings 50 and 100 mg/kg EGCG were applied to preseizure groups. Thirty minutes later, intracortically penicillin (500 IU) was injected. In the application during seizure groups, penicillin (500 IU) was injected after 5 min basal activity recordings. 30 min later, 50 and 100 mg/kg EGCG were applied. The time to onset of first spike-wave latency, spike-wave frequency and spike-wave amplitude of epileptiform activity were analyzed statistically.

RESULTS: In the group treated with only EGCG, it was not observed any epileptiform activity. There was not statistically difference between control and EGCG groups according to median values of the latency time to onset of first epileptic seizure (P>0.05). Median of epileptiform activity frequency and amplitude of epileptiform activity were not significantly different among preseizure and during seizure groups except time periods between 11th-30th min for the amplitudes of EGCG application during seizure group (p>0.05).

CONCLUSIONS: In this study, it has been shown that 50 and 100 mg/kg EGCG has not any significant effect on latency, spike-wave frequency and amplitude of epileptiform activity in penicillin induced epilepsy model by electrophysiological methods. This study was supported by Düzce University Research Fund (Project Number: DÜBAP-2013.04.01.184).

PC151
Agonist and Antagonist Effects of ATP-dependent Potassium Channel on Penicillin-induced Epilepsy in Rats
Erşin Beyazçiçek1, Yıldız Acar2, Recep Ozmerdivenli3, Şerif Demir2, Seyit Ankaralı1, Özge Beyazçiçek3, Handan Ankaralı1
1Department of Physiology, Medical School, Düzce University, Düzce, Turkey
2Department of Biostatistics, Medical School, Düzce University, Düzce, Turkey

AIM: The purpose of this study was to investigate acute effects of KATP channel agonist (pinacidil) and antagonist (glibenclamide) on experimental epilepsy models.

METHODS: In this study, 32 adult male Wistar rats were used. Rats were divided into 4 groups as control (saline), 1.0 mg/kg glibenclamide, 0.01 mg/kg pinacidil and solvent (dimethyl sulfoxide). All rats

82
PC152
Effect of (R)-(-) and (S)-(+) Carvone on the Penicillin-induced Epileptiform Activity in Rats
Özge Beyazçiçek¹, Sümeyye Taka², Şerif Demir³, Ersin Beyazçiçek⁴, Şeymanur Yılmaz Taşpi³, Anzel Bahadır³, Handan Ankaralı⁴
¹Department of Physiology, Düzce University Faculty of Medicine, Düzce, Turkey
²Department of Biophysics, Düzce University Faculty of Medicine, Düzce, Turkey
³Department of Biostatistics, Düzce University Faculty of Medicine, Düzce, Turkey

AIM: Aim of this study was to investigate acute effects of (R)-(-) and (S)-(+) carvone on experimental penicillin-induced epilepsy model electrocorticographically in rats.

METHODS: In this study 91 adult male Wistar rats were used. Rats were divided into 13 groups as: sham, solvent, control (penicillin), only (R)-(-) and only (S)-(+) carvone group, and the doses of 100 and 200 mg/kg of (R)-(-) and (S)-(+) carvone preseizure and during the seizure. All of the substances were administered intraperitoneally except penicillin. Rats were anesthetized with the dose of 1.25 g/kg urethane intraperitoneally. After the bone on the left cortex was removed, the electrodes were placed onto somatomotor area and electrocorticogram (ECOG) recordings were taken. After taking 5 min basal activity recordings in all groups, (R)-(-) and (S)-(+) carvone were injected to preseizure groups. 30 min later, penicillin (500 IU) was injected intracortically. In seizure groups, penicillin (500 IU) was injected before (R)-(-) and (S)-(+) carvone were administered. The time to onset of first spike wave latency, spike-wave frequency and spike-wave amplitude of epileptiform activity data were analyzed statistically.

RESULTS: In the group treated with only substance were not identified any epileptiform activity in the sham and solvent groups. Preseizure 100 mg/kg (S)-(+) carvone group’s median values of latency time to onset of first epileptic seizure were found to be significantly lower than the control group (p<0.05). However, there was no significant effect on spike-wave amplitude of epileptiform activity. Similarly, glibenclamide (a blocker of KATP channel) had no significant effect on spike-wave frequency and spike-wave amplitude of epileptiform activity.

CONCLUSION: The present results showed that administration of pinacidil has an antiepileptic effect in penicillin induced epilepsy model in rats. Pinacidil may be a potential antiepileptogenic drug in the future.

This study was supported by Düzce University Research Fund (Project Number: DÜBAP-2012.04.HD.070).

PC153
Role of Cannabinoid cb1 Receptor in Proconvulsant Effect of Ape lin-13 on Penicillin-induced Epileptiform Activity
Fatma Banu Şen, Durmuş Uçar, Mustafa Ayyıldız, Erdal Ağar
Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Turkey.

AIM: Epilepsy is a neurological disorder that starts suddenly and is transient onset of a group of neurons, resulting abnormal electrical discharges. Cannabinoids are heterogeneous group of compounds which have many functions in the central nervous system. The aims of this study was to evaluate interaction between cannabinoids and apelin-13 in experimental models of epilepsy.

METHODS: 36 male albino Wistar rats (180-270 g.) were divided into 6 groups. Groups: 1- Control, 2-Apelin-13 (15 µg, i.c.v.) 3-ACEA (7.5 µg, i.c.v.) 4- Ineffective dose of AM-251 (0.125 µg, i.c.v.) 5- Effective dose of ACEA (7.5 µg, i.c.v.) + effective dose of apelin-13 (15 µg, i.c.v.), 6- Ineffective dose of AM-251 (0.125 µg, i.c.v.) + ineffective dose of apelin-13 (5 µg, i.c.v.) + effective dose of ACEA (7.5 µg, i.c.v.). Rats were placed in the stereotaxic frame after anesthetized with 1.25 g/kg urethane (i.p.). Substances were applied 30 min after penicillin injection. Tukey test was used for statistical analysis. p<0.05 was considered statistically significant.

RESULTS: The effective dose of apelin (15 µg) increased the mean frequency of epileptiform activity starting from 20 min after penile injection. ACEA reduced epileptiform activity from 50 min after ACEA injection. The simultaneous application of both substances significantly reduced epileptiform activity in the 50 min after injection. Administrations of ineffective doses of Apelin-13 and AM-251 with effective dose ACEA also reduced epileptiform activity from in the 50 min.

CONCLUSIONS: The observation of anticonvulsant effect in the ACEA and apelin-13 groups suggests that this effect was blocked intracellular Ca2+ entries by apelin-13. Since ineffective doses of AM-251 and apelin-13 did not cause a synergistic effect and ACEA showed its anticonvulsant effect in this study. Therefore, it might be assumed that they use separate pathways for their effects.
and cause the anticonvulsant effect in older WAG/Rij rats. Administration of theophylline ethylenediamine (12.5 mg/kg/i.p; 25 mg/kg/i.p; 50 mg/kg/i.p) significantly decreased the total number (p<0.05) and the mean duration (p<0.05) of spike-wave discharges (SWDs) in the ECoG recordings, whereas the amplitudes of SWDs were not affected. In this study, the effect of theophylline ethylenediamine on increased seizure activity in aged WAG/Rij rats was studied.

METHODS: 20 male WAG/Rij rats (250-300 g), aged 18 months were divided into 7 groups. Rats were placed in the stereotaxic frame after anaesthetized by ketamine (30 mg/kg, i.p.) xylazin (5 mg/kg, i.p.) and tripolar electrodes were placed on skull. Following the recovery period, electrocorticography (ECoG) were recorded at 09:00 am for 2 hours every day. Subsequently, saline (Group I;1ml/i.p.) and theophylline ethylenediamine (Group II: 12.5 mg/kg/i.p; Group III: 25 mg/kg/i.p; Group IV: 50 mg/kg/i.p) were administered. After substance injection, ECoGs were recorded for another 2 hours. The total number, the total duration and the amplitude of the spike-wave discharges (SWDs) were calculated for 2 hours.

RESULTS: Administrated doses of theophylline ethylenediamine (12.5 mg/kg/i.p; 25 mg/kg/i.p; 50 mg/kg/i.p) significantly decreased the total number (p<0.05) and the mean duration (p<0.05) of SWDs in the ECoG recordings, whereas the amplitudes of SWDs were not affected.

CONCLUSIONS: The pathogenesis of nonconvulsive epilepsy is related to increased inhibitory function in the brain. Administration of theophylline ethylenediamine may suppress the inhibitory system and cause the anticonvulsant effects in older WAG/Rij rats.

PC155 The Effect of N170 Latenalization on Different Gender
Nigar Tasdemiroğlu1, Ethem Geier1, Suha Yağcıoğlu2
1Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
2Department of Biophysics, Hacettepe University Faculty of Medicine, Ankara, Turkey

AIM: Our aim was to investigate the gender effect on N170 lateralization using supraliminal angry human face visual expressions. METHODS: In this study, 30 volunteers, 18 women (19 ± 3.5 years) and 12 men (20 ± 3.5 years) participated. Human face visuals were designed graphically using Face Gen Modeler 3.5.3 Suite as four neutral face images. One of the neutral face image prepared as “probe” stimuli by adding facial fierce appearance. Face stimuli are randomly shown consistent with odd ball paradigm by 70% neutral, 30% probe. Supraliminal visuals were displayed 500 ms duration simultaneously event related potentials (ERP) were recorded. Supraliminal probe’s N170 amplitudes were recorded and compared to temporal cortex lateralization whether be the same in different gender or not. As a result of the differences in amygdala activity of different gender, N170 amplitude was compared in the T5 and T6 electrodes.

RESULTS: N170 amplitude data were detected in T5, T6 electrodes and analyzed using Mat Lab software. Student’s t-test and Mann-Whitney U was used to compare data groups of different gender. When N170 amplitudes of supraliminal probe compared women’s to men, women’s probes values statistically more negative than men. Similarly when N170 recordings of probe compared between T6 and T5 electrodes, there was no significant amplitude differences between the genders.

CONCLUSIONS: Consistent with the literature, we found N170 recordings was higher in female volunteers response to supraliminal angry human face expressions. Several reports in the literature have shown sex differences effect N170 lateralization over the occipital/temporal electrodes, however, there was no definitive information of cognitive neuroscience. We suggest that further studies with N170 recordings should be done in order to understand effects of gender difference on amygdala function.
on the first 4 days with twice a day training (trial phase) and time they spend in the platform quadrant on the 5th day (probe phase). Rats were then decapitated and p-CREB and CaMKII proteins were analyzed in hippocampus homogenates using Western blotting.

RESULTS: Escape latency was reduced significantly in all groups through the 4th day in the trial phase. Rats in SD+Saline group were observed to spend less time in the platform quadrant in probe phase. Hippocampal levels of CaMKII and pCREB proteins were reduced in SD+Saline group while they increased significantly in SD+C600 group. CONCLUSIONS: These data show that CDP-choline at 600 ìmol/kg dose can reduce the abolishment in memory performance in rats with REM sleep deprivation.

PC157 The Role of Cannabinoid Receptors on Pain Behavior-induced by REM Sleep Deprivation
Makbule Elfı Yılmaz1, Oktay Kaya2, Özgür Gündüz2, Gülünur Öztürk2, Levent Öztürk2
1Edirne Sultan 1.Murat State Hospital, Department of Anesthesiology and Reanimation, Edirne, Turkey
2Trakya University Faculty of Medicine, Department of Physiology, Edirne, Turkey

AIM: Sleep and pain are interrelated phenomena. While patients with sleep loss experience increased pain perception and lower pain threshold, painful conditions impair sleep quality and reduce sleep efficiency. In this study, we aimed to investigate the role of cannabinoid system in sleep/pain relationship by using cannabinoid WIN55 and cannabinoid receptor antagonists AM251 and SR144528 in REM deprivation model.

METHODS: Sixty balb/c mice were subjected to 72 hours REM sleep deprivation by modified flower-pot technique and were evaluated in 6 groups. Pain assessments were performed by hotplate and tail-flick methods at the 0 (baseline), 72 (after sleep deprivation) and 73. (after drug administration) hours. Group 1 (control group) received i.p. vehicle (78% saline+1% Ethanol+1% Tween 80+20% DMSO). Group 2 (Cannabinoid agonist group) received i.p. cannabinoid agonist (WIN 55,212,2). Group 3 (Cannabinoid CB1 receptor antagonist + agonist group) received i.p. cannabinoid CB1 receptor antagonist (AM251) followed by WIN55 after 20 min. Group 4 (Cannabinoid CB2 receptor antagonist + agonist group) received i.p. cannabinoid CB2 receptor antagonist (SR144528) followed by WIN55,212,2 after 20 min. Group 5 (Cannabinoid CB1 receptor antagonist group) received i.p. cannabinoid CB1 receptor antagonist (AM251). Group 6 (Cannabinoid CB2 receptor antagonist group) received i.p. cannabinoid CB2 receptor antagonist (SR144528).

RESULTS: Occurrence of pain response was delayed in mice subjected to 72 hours REM sleep deprivation (P values for Group 1,2,3,4,5 and 6 were 0.009;0.028;0.009;0.014;0.594;0.009, respectively). Animals were tired and fatigued. CB1 or CB2 antagonists alone or in combination with WIN55,212,2 led to no change in pain behavior under the conditions of REM sleep deprivation.

CONCLUSIONS: We suggest that there is no relationship between cannabinoid receptor activity and REM sleep deprivation-induced pain behavior.

PC158 Electrophysiological Evaluation of the Relation Between the Levels of Body Mass Index and Apnea Hypopnea Index
Murat Kayabekir1, Ömercan Topaloğlu2
1Regional Training and Research Hospital, Sleep Disorders Center, Electrophysiology Laboratory, Erzurum, Turkey
2İnönü University, Medicine Faculty, Department of Endocrinology, Malatya, Turkey

AIM: The purpose of this study was to investigate electrophysiological properties of a possible relationship between ‘body mass index’ (BMI) and ‘apnea-hypopnea index’ (AHI) and to emphasize the importance of this relation for sleep health.

METHODS: For this goal, 120 subjects, between 20 and 65 years of age, were divided to four groups according to BMI and presence or absence of sleep disordered breathing: (1) BMI=8-18.5 , healthy (n=30), (2) BMI=18.5-24.9 , overweight (n=30), (3) BMI=25-29.9 , obese (n=30), (4) BMI ≥30 kg/m2, morbidly obese (n=30). The electrophysiological properties achieved were AHI, sleep efficiency (%) and duration (in minutes) of total sleep, and of stage 1, stage 2, stage 3 of non-REM and of REM periods. While the effect of BMI values on these electrophysiological values was analyzed with ANOVA, Duncan’s, Pearson.

RESULTS: While there was a highly significant positive correlation between BMI levels and AHI levels (correlation coefficient 0.470**), there was moderately significant negative correlation between BMI and sleep efficiency (correlation coefficient -0.235*) or duration of REM period (correlation coefficient -0.281**). AHI levels belonging to group 1 and 2 were statistically significantly lower than those of group 3 and 4 (p=0.000). The level of sleep efficiency was lower in group 4 in comparison to the other groups (p=0.027). The duration of stage 2 was significantly higher in group 2 and group 3 (p=0.092). The duration of stage 3 and REM period were significantly shorter in group 4 comparing with group 1 (respectively p=0.009; p=0.000).

CONCLUSIONS: This study revealed the effect of different BMI levels on the sleep electrophysiology. We showed that the subjects who had higher BMI levels might have higher AHI levels, and that changes in sleep efficiency and quality because of higher AHI levels could disturb sleep health.

PC159 The Effect of Post-Learning REM Sleep Deprivation on Hippocampal BDNF and mir-182 Expression in Mice
Sebahattin Karabulut1, Asuman Gölgeli1, Kezban Korkmaz Bayramov2, Fatma Özdemir2, Ergül Ergen2, Esra Tufan2
1Department of Medical Physiology, Erciyes University Faculty of Medicine, Kayseri, Turkey
2Department of Genetics, Faculty of Veterinary, Erciyes University, Kayseri, Turkey

AIM: Consolidation is stabilization of memories and that requires specific time period of sleep is needed after learning. Studies indicates that BDNF is necessary for hippocampal-dependent lear-
The effects of BDNF on protein synthesis may be regulated by specific microRNAs such as miR-182. The aim of study is to determine specific time period of sleep using a spatial memory test (Morris water maze) and to investigate the effect of SD on BDNF mRNA and miR-182 expression in hippocampus.

METHODS: 50 male BALB/c mice aged 2 month (n=10) were sleep deprived (SD) in one of the two after the last training session the mice were deprived of sleep for 3 h (SD1), in the second group after the last training session and a waiting period of 3 h the mice were deprived of sleep for 3 h (SD2) and the last group was Non-sleep deprivation (NSD) group. Quantitative RT PCR was used to measure changes in mRNA and miRNA. Repeated-measures ANOVA was used to analyze the changes in Distance Moved (DM) and Escape Latency (EL). Probe trial, PT were analyzed using oneway ANOVA. For analyses of RNAs, the significance was determined by using ANOVA and Kruskal–Wallis H test.

RESULTS: We found that DM and EL reduced across trials in NSD and SD1 (P<0.05), but these parameters were higher in SD2 (P<0.05). In SD2, PT was found lower than NSD and SD1 (P<0.05). There was significantly increased BDNF mRNA in SD2 and decreased miR-182 in SD1 (P<0.05).

CONCLUSIONS: Our findings indicate a specific 3-h period, extending from 3 to 6 h after last training, during which SD impairs spatial function. Although BDNF mRNA was upregulated by SD in hippocampus, its target miR-182 level may act as a decisive role.

PC160
Can There be a Genetic/Epigenetic Association Between Nicotine Addiction and Cognitive Processes?
Fulya Tuzcu Gürkan1, Müzeyyen Uğur2, Sinem Demirel Balci3, Şakire Pöğün4, Lütfiye Kantı5
1Ege University, Faculty of Medicine, Department of Physiology, İzmir, Turkey
2Ege University, Center for Brain Research, İzmir, Turkey

AIM: We selectively breed high and low nicotine-preferring (HINP, LOWNP) rat lines, based on free-choice oral-nicotine intake. Studies analyzing the phenotypic characteristics of these rats can elucidate genetic and neurobehavioral aspects of nicotine addiction. Male rats prefer spatial while females prefer visual cues to locate a platform in the water maze (WM); nicotine modifies this sexually dimorphic pattern in females. Our aim was to investigate if HINP and LOWNP rats, without nicotine exposure, use different strategies in the WM.

METHODS: HNP and LOWNP 15th generation and control male and female Sprague-Dawley rats (n=10 in each group) learned to locate a platform in the WM, in the same place but hidden or visible, for 12 days. On the probe trial of day 13, the visible platform was moved to another location, providing a choice between the non-existent hidden- and the visible platforms. HSV tracker and software were used to monitor latency-to-reach-the-platform (LAT), path-length and swimming-speed.

RESULTS: LAT decreased through days during both visible (F(8,448)=163.306; p=0.001) and hidden (F(2,112)=104,663; p=0.001) platform conditions (ANOVA). Additionally, there was a significant group effect (HINP-LOWNP-Control) for visible platform condition (F(1,56)=3,355; p=0.042). During probe trial, there was a group x sex interaction in time-spent-in-the “old quadrant” (F(2,56)=4,255; p=0.019) and female control rats immediately went to the visible platform in the new location without spending any time (8/10 rats spent 0 time) in the “old quadrant” (Fisher’s Exact;p=0.032).

CONCLUSION: HINP and LOWNP rats in the 15th generation, unlike controls, do not show sexual dimorphism in the strategy they prefer in the WM. This finding may be the result of an epigenetic modification or may suggest a genetic association between cognitive processes and nicotine addiction.

PC161
Autonomic Reactivity Changes During Hypno-Meditation Session: An Experimental Electrophysiological Study
Derya Güzel1, Hasan Ekerbiçer2, Neşe Canavar Ünal3, Meltem Karabel2, Fulya Aktan Kibar2, Baran İnci2, Hakan Kolaylı4
1Sakarya University, Medical Faculty, Department of Physiology, Sakarya, Turkey
2Sakarya University, Medical Faculty, Department of Public Health, Sakarya, Turkey
3Sakarya University, Medico-Social Center, Sakarya, Turkey
4Sakarya University, School of Physical Education and Sports, Sakarya, Turkey

AIM: A hypnotherapy or hypno-meditation session starts with hypnotic induction, which is the process conducted by a therapist to establish the state required for hypnotic trance. It is difficult to assess the subject’s degree of relaxation during hypnotic induction. The aim of the present study was to assess the subjects hypnotic state objectively by monitoring autonomic responses using electrodermal activity (EDA).

METHODS: This experimental study was performed in the Medico-Social Center of the Sakarya University, Turkey. Study protocol was approved by the Local Ethics Committe and participants provided informed consent. Twenty-three healthy participants were enrolled. Participants with using medications, or have a chronic psychiatric illness were excluded. During the session, a standart self-hypnosis recording was played to each subject and skin conductance values at 0., 1., 5. and 10. min obtained by a biofeedback device were recorded simultaneously to evaluate autonomic responses. Skin conductance values at the first, fifth and tenth minutes were compared to basal values by using Wilcoxon Signed Ranks test.

RESULTS: Median values of skin conductivity at the beginning, first, fifth and tenth minutes were 9.5 μS (min. 3.6 μS - max. 23.0 μS), 8.8 μS (min. 3.0 μS - max. 19.3 μS), 5.6 μS (min. 2.2 μS - max. 12.6 μS) and 4.7 μS (min. 2.2 μS - max. 12.6 μS), respectively. p values indicated significant differences for all 3 comparisons (p<0.001).

CONCLUSIONS: Our data indicated a significant decrease in terms of skin conductance values during hypnotic induction process consistent with the duration of sessions. There are several tests which were used to infer the depth of hypnotic trance (1, 2). Also there are tests for evaluating hypnotic susceptibility (3). Analyzing the possible correlation between skin conductance values and results of these tests may be the focus of future studies.
Effects of Diabetes on Brainstem Auditory Evoked Potentials

Güven Akçay¹, Pınar Güzeli², Betül Danişman³, Göksun Başaranlar³, Alper Tunga Derin⁴, Narin Derin¹
¹Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
²Department of Otorhinolaryngology, Akdeniz University Faculty of Medicine, Antalya, Turkey

AIM: One of the long-term complications of Diabetes Mellitus (DM) associated with high blood glucose levels is hearing loss. Blood glucose level over 300 mg/dl in rats is defined as diabetes. In our study, the changes in the brainstem auditory evoked potentials (BAEP) were investigated in rats with diabetes and also in rats with high glucose levels.

METHODS: In this study, four adult male Wistar rats weighing 180-250 g were used. While control group applied with saline intraperitoneally, the other 3 rats were administered with single dose (60 mg/kg) of streptozotocin to create DM. The fasting blood glucose levels were measured three months after injection. High Blood Glucose group (HBG) was accepted between 100 and 300 mg/dl. Rats with blood glucose level over 300 mg/dl were adopted as diabetes group. Fasting blood glucose levels were measured again at the end of 4th month, and 60 and 70 dB SPL in 8 and 16 kHz frequencies BAEP records were taken under anesthesia in testing room without noise.

RESULTS: Increased in hearing threshold due to rising of blood glucose level was observed. In HBG and DM groups, prolonged BAEP latency was observed at 8 kHz, 60 dB and 16 kHz 70 dB compared to control group. No significant difference was observed for interpeak latencies between groups.

CONCLUSIONS: Our data showed that keeping control of blood glucose levels in diabetic patients is important for hearing.

This study was supported by Akdeniz University Scientific Research Projects Coordination Unit (Project number: 474).

Effects of Ingested Sulfite on Auditory Evoked Brainstem Response

Betül Danişman¹, Güven Akçay, Göksun Başaranlar, Ceren Kencebay, Narin Derin
¹Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey

AIM: Sulfite compounds (sodium metabisulfite, potassium metabisulfite, sodium bisulfite, potassium sulfate, sodium sulfate, etc.) are widely used in food, beverage and pharmaceutical industries. In consequence of the expansion of frozen and fast food consumption, sulfite exposure has increased in recent years. Because of the differences in people’s eating habits, each individual takes sulfite orally at varying concentrations. In our study, effects of different doses sulfite (100 mg/kg and 250 mg/kg) on the Brainstem Auditory Evoked Potentials (BAEP) have been investigated.

METHODS: In our study, 40 adult male Wistar rats were randomly divided into three groups. One of these is control (K) which were given distilled water via gavage for 35 days, the other two groups are sulfite 1 (S1) and sulfite 2 (S2) which were given sodium metabisulfite (100 mg/kg/day) and (260 mg/kg/day) in the same way. At the 36th day, all rats were anaesthetized with ketamine (50 mg / kg)-xylazine (6 mg/kg) and BAEP was recorded in acoustically isolated room.

RESULTS: Depending on the dose administered, latencies of all waveforms in the sulfite groups were extended compared with the control group at 8 kHz and 16 kHz. Interpeak latencies were also evaluated, but there was no significant difference between groups. Moreover, increments were found on the threshold of hearing due to increase in sulfite doses.

CONCLUSIONS: It has been shown that increments on the dose of sodium metabisulfite cause to increase of the hearing threshold and prolonged latencies of all waves. This study was supported by Akdeniz University Scientific Research Projects Coordination Unit.

Verdi A (432 Hz) versus Standard A (440 Hz) in Music-related Electrical Activity of Brain: An EEG Analysis of Sultaniyegâh Ağır Semâi Composed by Hammamizade Ismail Dede Efendi

Gülnur Öztürk¹, Erdoğan Bulut², İlhan Umut³, Levent Öztürk⁴
¹Trakya University Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Edirne, Turkey
²Trakya University Faculty of Health Sciences, Department of Audiology, Edirne, Turkey
³Trakya University Faculty of Engineering, Department of Computer Engineering, Edirne, Turkey
⁴Trakya University Faculty of Medicine, Department of Physiology, Edirne, Turkey

AIM: A debate has been continuing on the pitch value of musical note A, while some music authorities advocate so-called Verdi A of 432 Hertz (Hz), some others say that the standard pitch of 440 Hz for A should be maintained. As music appreciation is a function of brain, brain electrical activity as an aspect of brain function was planned to be studied. In this study, we compared the effects of these two pitch values on electrical activity of brain.

METHODS: Ten healthy young adult volunteers (Male/Female, 5/5; mean age, 19.4±0.8 year) included to the study. Two versions (A=432 Hz vs A=440 Hz) of Sultaniyegâh Ağır Semâi by Dede Efendi were used for music session. The study was performed in double-blind, cross-over design. After a standard audiologic evaluation, each participant was taken into a sound-proof room and basal 4-channel EEG (F7, Fp1, Fp2, F8) was recorded for 1 minute by using a portable EEG device followed by music exposure (432 Hz or 440 Hz). Post-music EEG was recorded for 1 minute. In the following day, the same participant was taken into laboratory again and this time EEG recordings were taken by using other version of music. Percent change of frequency bands alpha, beta, delta, gamma, and theta under the influence of Sultaniyegâh Ağır Semâi compared between 440 Hz versus 432 Hz by non-parametric Wilcoxon test.

RESULTS: We failed to find any significant difference between two versions of recorded music. Although this study was limited in number of participants, two different music scales (Verdi A versus Standard A) were compared for the first time by using EEG recording.

CONCLUSIONS: We suggest that only 8 Hz difference in musical scale may not lead to significant difference in electrical activity of human brain.
Investigation of Sleep Quality and Sleep Disorders in the Secondary Teaching Students
Esra Özer1, Merve Ergün2, Mustafa Saygı3, Fatma Onat2
1Medical Faculty, Süleyman Demirel University, Isparta, Turkey. 2Department of Physiology, Medical Faculty, Süleyman Demirel University, Isparta, Turkey.

AIM: This study was to investigate the quality of sleep and sleep disorders and the factors affecting the quality of sleep in secondary education students different Faculty of the Süleyman Demirel University (SDU).

METHODS: In this cross-sectional study, which has created different classes of faculty in the secondary education (n = 205). Thirty two socio-demographic closed and open-ended questions, Pittsburgh sleep quality index (PSQI) questionnaire was administered under observation in the students. The data were evaluated of descriptive statistics, chi-square, independent t test, Pearson correlation and ANOVA.

RESULTS: In the study, 205 students were 77(38%) male and 128(62%) female, mean age 20.7±2.52, Body mass index (BMI) was 22.27±4.33. Students 33(9.8%)Engineering, 58(17.2%)Arts and Sciences, 49(14.5%)Economics and Administrative Sciences and 65(19.3%) the Health Sciences. The average sleep latency of students 27.64±23.92 min, average night sleep 7.71±1.59 h, the average sleep time 10.36±2.06 h, PSQI scores were found to be 9.60±4.41. Students have 20(5.9%) accompanied by a chronic disease and there are drugs in use because of illness, 61(18.1%) students were smokers. PSQI average were significantly in terms of gender (p<0.001) and is lower in the men. PSQI scores difference between no smokers and lack of 1 pack for day, and it was higher in the smokers. PSQI scores were found higher statistically significant take caffeine daily (p=0.002). PSQI scores were found statistically significant between no napping and sometimes napping (p=0.003) and often (p = 0.001) and it was increasing respectively. There was a significant difference between the PSQI scores and are not satisfied with the school’s life (p=0.001) and it was lower in the satisfied students.

CONCLUSIONS: Sleep disorders were identified in the secondary education students participated in our research. Sex, smoking, caffeine use, chronic diseases and satisfied with the school’s life might affect the quality of sleep.

The Evaluation of Complete Blood Count in the Patients of Laryngeal Carcinoma
Saime Özbebek Şebin1, Abdulkadir Şahin2, Engin Şebin3, Esra Gündogdu4, Mustafa Sitki Gözeler2
1Department of Physiology, Ataturk University Faculty of Medicine, Erzurum, Turkey. 2Department of Otorhinolaryngology, Ataturk University Faculty of Medicine, Erzurum, Turkey. 3Department of Medical Biochemistry, Ataturk University Faculty of Medicine, Erzurum, Turkey.

AIM: Laryngeal carcinoma is one of the common head and neck malignancy, its incidence increases with increasing age. Laryngeal carcinoma is usually asymptomatic, which leads to late diagnosis and poor prognosis. In this study, complete blood count of the patient and control groups were evaluated to investigate the possible relationship with tumor stages.

METHODS: This study data were obtained retrospectively from 89 patients’ presurgical complete blood count data who had an operation because of laryngeal tumor between 2013-2016 in Ataturk University Hospital’s Otorhinolaryngology Department. In this study, data from Ataturk University Faculty of Medicine, ENT clinic, which operated for a total of 89 people laryngeal mass between the years 2013-2016 were obtained from retrospective preoperative blood count results. The patient group included 57 laryngeal carcinoma patients. The control group included 20 polyp patients and 12 nodul patients. Patient group was divided into four groups according to T staging. The levels of neutrophil-lymphocyte ratio (NLR), white blood cell (WBC), red blood cell distribution width (RDW), platelet (PLT), mean platelet volume (MPV) were compared between groups.

RESULTS: In this study, the levels of NLR and RDW in patient groups were significantly higher than the control group (p<0.001). No significant difference was determined in the comparison of patient and healthy groups in terms of WBC, PLT, MPV levels (p>0.05). According to T staging, the levels of NLR in the patients of T3 and T4 groups were significantly higher than in the T1 patient group (p=0.05).

CONCLUSIONS: The levels of NLR and RDW in patient group were significantly higher than the control group. This suggests that the values of NLR and RDW may be cheap and easily accessible biomarkers in the diagnosis and staging of laryngeal carcinoma. However, further more detailed studies with larger groups are needed.

Liver Enzymes and Ca/P Status in Rats Receiving Repeated Low-grade Bacterial Challenges Early in Life and Fed Long-term High-fat Diet
Tuba Özgöçer, Cihat Uçar, Sedat Yıldız
Inönü University, Medical School, Department of Physiology, Malatya, Turkey.

AIM: High energy diets and bacterial infections early in life might cause permanent reorganization of the metabolism including the liver enzymes. Therefore, the aim of the current study was to investigate the effects of repeated bacterial challenges during postnatal period on liver enzymes and calcium/phosphorus status in rats under long-term high-fat diets.

METHODS: Rat pups (female, n=32; male, n=32) were injected (i.p.) either 15 µg/kg Escherichia coli cell wall constituent (lipopolysaccharide, LPS) or saline in the postnatal days 7, 9, 11, 13, 15, 17 and 19. Following weaning (pnd 21), they were divided into two subgroups and were either offered standard chow or high fat diet until day 150. Blood samples were analyzed for AST, ALP, ALT, Ca and P. Data were analyzed by General Linearized Models (GLM) and an alpha level of p<0.05 was accepted as significant.

RESULTS: Serum ALT and ALP were higher in males and in high-fat diet groups (p<0.01) but serum AST levels did not differ (p>0.05). Serum P was higher in males (p<0.05), but serum Ca levels did not differ (p>0.05).

CONCLUSIONS: Results show that both the diet and the gender affect liver enzymes and this suggests that the liver might react to high-fat diet in a sexually dimorphic way. Male and female rats Ca/P levels may be held regardless of the amount of fat in the diet. This study was supported by TÜBİTAK (Project # 111S440), Turkey.
Aim: Galectins are a group of lectins that have many roles in various disease conditions including inflammation and autoimmune diseases. Galectin-3 is implicated as a mediator of inflammation and associated with arthritis and rheumatoid arthritis (RA) by activating synovial fibroblasts. It may be used as a novel biomarker in RA. Hepcidin is a key hormone controlling iron homeostasis and a mediator of inflammation-induced anemia, and its prohormone is called pro-hepcidin. Psoriatic arthritis (PsA) is a chronic inflammatory joint disease associated with psoriasis. To our knowledge, the serum galectin-3 levels were analysed for the first time in patients with PsA to determine their role as a novel biomarker in these patients. Prohepcidin is analysed due to its role in inflammatory disease.

Methods: Forty-three patients diagnosed as PsA (14 males/29 females, mean age 48.1) according to CASPAR classification criteria and 42 age and sex-matched healthy volunteers were included in the study. The serum galectin-3 and pro-hepcidin levels were measured by commercially available ELISA kits. Their relationship with clinical and laboratory parameters, including CRP (C-reactive protein) and ESR (Erythrocyte sedimentation rate), were assessed.

Results: The PsA patients had significantly raised mean serum galectin-3 level (P = 0.006) when compared to the healthy group. However, the correlation between serum galectin-3 levels and diseases activity indices was not statistically significant. The mean serum level of pro-hepcidin was similar between the PsA patients and healthy group (P = 0.310). There was a positive correlation among serum pro-hepcidin levels and pain (P = 0.046) and nail involvement (P = 0.013).

Conclusions: The mean serum galectin-3 level was elevated in PsA patients compared to controls, indicating that galectin-3 may represent a novel diagnostic biomarker in PsA patients. Prohepcidin levels were similar but there was a positive correlation between pro-hepcidin levels and pain and nail involvement.

A Survey of Undergraduate Physiology/Oral Physiology Education in Dental Faculties

Esra Bihter Gürler¹, Sinem Yıldız İnanıcı²

¹Marmara University, School of Medicine, Department of Physiology, Istanbul, Turkey
²Marmara University, School of Medicine, Department of Medical Education, Istanbul, Turkey

Aim: The purpose of this study was to evaluate physiology/oral physiology education in Dental Faculties in Turkey (1).

Methods: The survey included thirty-six questions and it was posted on “Google Forms” and shared via social networks (facebook etc.). Collected data were evaluated by Excel 2016 and SPSS v.22.

Results: Five hundred fifteen students responded to the survey. Overall, median age of participants is 21.8±2.4 and 60.2 % of them are women. Most of the students are currently studying in governmental universities (92 %) and receive education in Turkish. They generally (71.8 %) tend to apply for National Dental Speciality Examination. Weekly 2.8±1.2 credit hours are given in the physiology courses, usually by lecturers of the physiology department (83.6 %). Only 32.2 % of participants have oral physiology courses and 87.7 % of them do not have a physiology laboratory in their faculties. Opposing to oral physiology, even 84.7 % have a physiology laboratory, while the courses generally are not integrated with practical studies (47.7 %). According to students, physiology (29.3 %) and oral physiology (26 %) courses are invaluable for dental education and are not beneficial (26 % physiology, 32.5 % oral physiology) for succeeding in National Dental Speciality Exam. Approximately, half of the participants (52.5 %) do not have an information about PhD degree in physiology and are mostly not interested in getting a PhD in Physiology (73.1 %).

Conclusions: Physiology instruction varies among different faculties. Based on the platform of the Turkish Society for Physiological Sciences, it is recommended to organize collaborative studies to establish a core physiology programme suitable for Dental Faculties.
PC171
Examination of Physiology Course Laboratory Curriculum by Q Method
Rahime Aslançoğlu1, Öğuzhan Kavrik2, Fatma Başalan İz2, Nurhan Gümral2
1Department of Midwifery, Süleyman Demirel University, Isparta, Turkey
2Department of Physiology, Süleyman Demirel University, Isparta, Turkey
3Department of Nursing, Süleyman Demirel University, Isparta, Turkey

AIM: Q-sort technique is a method used to measure thoughts and behavior of individuals. In our study, we aimed to investigate thoughts of students about the physiology laboratory curriculum.

METHODS: The research was conducted on 153 medical school students that completed of the physiology laboratory practice a year ago. During physiology laboratory practice of students 41 questions generated from verbal expression was collected in 4 groups (A,B,C,D group). These questions were placed on prepared paper up to 10 to 1 score. Than, the same students were performed with face to face interview technique.

RESULTS: The item mean score of A group (10 question) was 4.5±1.02. The lowest average in A group was “laboratory course is unnecessary” and the highest average was “after laboratories required reports are unnecessary”. The item mean score of B group (12 question) was 5.19±0.79. “I think the course is a complete waste of time” was the lowest average item and “much practice so well in the laboratory course” was the highest average item in B group. The item mean score of C group (8 question) was 6.98±1.41. The lowest average item in C group “When I read the lecture notes I can learn”, the highest average item was “I can learn visually”. The item mean score of D group (11 question) was 5.44±0.97. The lowest average item in D group “I think laboratory course does not contribute to medical education” and the highest average item was “To practice in the laboratory and evaluate the results is very important for clinical training” according to our results.

CONCLUSIONS: Q methodology can be an effective method in the development of physiology course laboratory curriculum.

PC172
Smoking and Alcohol Consumption of Medical Students
Recep Dokuyucu1, Hatice Doğan1, Ökan Tutuk2, Ayşegül Yiğit2, Merve Karaca2, Erhan Yenigül2, Cemil Tümer2
1Department of Medical Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
2Department of Nursing, Mustafa Kemal University, Hatay, Turkey

AIM: Smoking and alcohol consumption are major health risks that have a significant impact on health. Smoking and alcohol consumption have been identified as major contributors to chronic diseases, particularly type II diabetes, coronary heart disease, hypertension, and obstructive sleep apnea. The study aimed to determine the effects of smoking and alcohol consumption on the health of medical students.

METHODS: A cross-sectional study was conducted among medical students of Mustafa Kemal University (MKU). Data were collected through a questionnaire aimed at determining the prevalence of smoking and alcohol consumption.

RESULTS: The study revealed that the prevalence of smoking among medical students was 64.2%. The prevalence of alcohol consumption was 17.3%. The study also found a significant correlation between smoking and alcohol consumption.

CONCLUSIONS: Smoking and alcohol consumption have a significant impact on the health of medical students. Health education programs should be implemented to reduce the prevalence of smoking and alcohol consumption among medical students.
statistically significant difference exist among them, was acquired by using One-Way ANOVA. Statistical significance value was set as p<0.05.

RESULTS: Compatible with the literature, weight, BMI, hip and waist circumference increase significantly as age grows. Mean age of women differentiates significantly as per the number of chronic diseases (F: 5.371, p:0.006). The BMI values of women with two or more chronic diseases were significantly greater than that of women with one chronic disease (F:6.792, p:0.002).

CONCLUSIONS: People should be made aware of the reasons of obesity and its relation with other chronic diseases. In particular, family health centers should provide services for the prevention of obesity. Therefore, it is essential for these services to become public health policy.

Effect of Cigarette Smoking on Body Composition in Current Smokers

Seda Artış¹, Burcu Çaykara¹, Zuhal Sağlam²
¹Department of Physiology, Istanbul Medeniyet University Medical School, Istanbul, Turkey
²Family Medicine, Göztepe Research and Training Hospital, Istanbul, Turkey

AIM: Smoking is a major risk factor for devastating cardiovascular disease together with a higher risk of insulin resistance and hyperinsulinemia. There is controversy in the literature explaining the relationship between smoking and obesity indices, especially in terms of body composition. Some report that smoking cause decreased appetite and increase energy expenditure; whereas others propose that it may increase propensity to abdominal obesity. We aimed to investigate effects of cigarette consumption quantity on body composition among current smokers.

METHODS: After obtaining ethical approval currently cigarette smoking 47 male volunteers were enrolled into the study. Participants had no known diseases, sedentary, and having non-restricted mixed diet. They were grouped according to the pack-year of cigarettes = number of packs of cigarettes smoked per day x the number of years of smoking] they smoke (<10 (Group 1, n:11, age: 26.0±4.9), 10-20 (Group 2, n:14, age: 33.66±8.1), 20-40 (Group 3, n:14, age: 45.14±9.6), and >40 (Group 4, n:8, age: 49.83±6.7)). Compartmen
tal body composition was determined using Body Impedance Analyzer (TANITA BC418). For statistical analysis Kruskal Wallis and Spearman Correlation tests were used.

RESULTS: Group 4 had significantly bigger waist circumference than Group 1 and Group 2 (both p<0.05; means: 81.91±3.06, 85.33±2.4, 88.19±3.78, 96.33±2.5,respectively). Also the waist-hip ratio in Group 4 was higher than Group 1 (0.94±0.01 and 0.85±0.014; p<0.05). Internal fat amount was higher in Group 4 than Groups 1 and 2 (both p<0.05) and in Group 3 than Group 1 (p<0.05) (means: 3.91±0.74, 5.2±0.78, 8.2±1.23, 9.83±0.95,respectively). Both Groups 1 and 2 had lower metabolic age than both Groups 3 and 4 (p<0.05 all). Waist-hip ratio, fat mass, visceral fat amount, body mass index, and metabolic age were found positively related to the amount of cigarettes smoked (all p<0.05).

CONCLUSIONS: Smoking is known to decrease appetite and many smokers retrain from quitting as they do not want to gain weight. However our results show that chronic heavy smoking seems related to higher risk of obesity. Also the relation observed between heavy smoking and visceral fat amount indicates an especially higher risk for metabolic syndrome.